We report on the major improvement in UV photosensitivity and faster photoresponse from vertically aligned ZnO nanowires (NWs) by means of rapid thermal annealing (RTA). The ZnO NWs were grown by vapor-liquid-solid method and subsequently RTA treated at 700°C and 800°C for 120 s. The UV photosensitivity (photo-to-dark current ratio) is 4.5 × 103 for the as-grown NWs and after RTA treatment it is enhanced by a factor of five. The photocurrent (PC) spectra of the as-grown and RTA-treated NWs show a strong peak in the UV region and two other relatively weak peaks in the visible region. The photoresponse measurement shows a bi-exponential growth and bi-exponential decay of the PC from as-grown as well as RTA-treated ZnO NWs. The growth and decay time constants are reduced after the RTA treatment indicating a faster photoresponse. The dark current-voltage characteristics clearly show the presence of surface defects-related trap centers on the as-grown ZnO NWs and after RTA treatment it is significantly reduced. The RTA processing diminishes the surface defect-related trap centers and modifies the surface of the ZnO NWs, resulting in enhanced PC and faster photoresponse. These results demonstrated the effectiveness of RTA processing for achieving improved photosensitivity of ZnO NWs. 相似文献
The formation and characterization of interdigitated ambipolar active layers prepared by a hybrid (solution processing and thermal vacuum evaporation) method for a polymer‐gated organic phototransistor with highly balanced ambipolar charge transport is reported. The interdigitated active layer is comprised of a solution‐processed single‐crystalline microcrystal array of p‐type 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) and a thin film of n‐type N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (PTCDI‐C13). The TIPS‐pentacene single‐crystalline microcrystal, which is confirmed using X‐ray diffractometry and polarized optical microscopy, is embedded in the PTCDI‐C13 film deposited using a thermal vacuum evaporation method. The devices with the interdigitated active layer exhibit selective charge transport characteristics varying from unipolar to ambipolar depending on the thickness of the PTCDI‐C13 film. The fabricated ambipolar organic transistor shows high photoresponsivity at low light intensities and good dynamic photoresponse. These results demonstrate the potential use of such devices in ambipolar optoelectronic applications. 相似文献
β‐In2S3 is a natural defective III–VI semiconductor attracting considerable interests but lack of efficient method for its 2D form fabrication. Here, for the first time, this paper reports controlled synthesis of ultrathin 2D β‐In2S3 flakes via a facile space‐confined chemical vapor deposition method. The natural defects in β‐In2S3 crystals, clearly revealed by optical spectra and optoelectronic measurement, strongly modulate the (opto)‐electronic of as‐fabricated β‐In2S3 and render it a broad detection range from visible to near‐infrared. Particularly, the as‐fabricated β‐In2S3 photodetector shows a high photoresponsivity of 137 A W?1, a high external quantum efficiency of 3.78 × 104%, and a detectivity of 4.74 × 1010 Jones, accompanied with a fast rise and decay time of 6 and 8 ms, respectively. In addition, an interesting linear response to the testing power intensities range is observed, which can also be understood by the presence of natural defects. The unique defective structure and intrinsic optical properties of β‐In2S3, together with its controllable growth, endow it with great potential for future applications in electronics and optoelectronics. 相似文献
The variations in physical parameters of an organic field-effect transistor having dioctylbenzothieno[2,3-b]benzothiophene (C8BTBT) as the channel semiconductor were investigated under different light irradiation conditions at wavelengths of 350 nm, 370 nm, 400 nm and by increasing exposure doses. The progress of the electro-optical history of the transistor was evaluated by repeating I–V scan cycles both in the dark and under light exposure. The information recorded upon different exposure times was used to detect the photoactivated charge-trapping effects. The device showed a stable I–V response in the dark bias (VDS = −10 V, −10 V ≤ VGS ≤ +10 V) conditions and a persistent threshold voltage (VT) shift under illumination at all irradiation wavelengths. We suggested that the observed dose-dependent VT drifts were due to charge retention in trap sites within the organic semiconductor. The threshold voltage was recognized as the main parameter affected by charge retention. VT variations were modelled versus time through a single exponential revealing a maximum in charge relaxation times for irradiations at wavelengths of 370 nm, in proximity of the C8BTBT bandgap energy. Furthermore, bias-stress effects and persistent photoinduced VT drifts were found to depend on comparable characteristic times. Therefore, a common nature for both the bias-stress decay and relaxation from photoexcitation mechanisms is likely. 相似文献
Organic UV photodetectors using a transistor architecture can yield higher photoresponsivity than diode‐based devices because of the presence of a gate electrode. However, a long‐term issue of these phototransistor devices is the slow response speed, which hinders their practical applications. Here, organic UV phototransistors are constructed using few‐layer organic crystalline van der Waals (vdW) heterojunctions as the photoactive layers. The thickness of the photoactive layers is even less than the exciton diffusion length, thus removing the exciton‐diffusion bottleneck and giving rise to the confinement of charge separation and recombination within the adjacent molecular layers across the heterojunction interface. Hence, the phototransistor devices can exhibit a remarkably enhanced response speed (rise and decay times as short as only ≈4 and 6 ms, respectively). The layer‐dependent photoresponse characteristics are also observed, reinforcing the great importance of few‐layer organic heterostructures in phototransistor devices. This work not only provides a promising avenue toward fast response optoelectronic devices but also presents an in‐depth understanding on the microscopic nature of photogenerated charge carriers at the precision of molecular layers. 相似文献
Typically, molybdenum disulfide (MoS2) synthesized by chemical vapor deposition (CVD) is polycrystalline; as a result, the scattering of charge carriers at grain boundaries can lead to performances lower than those observed in exfoliated single-crystal MoS2. Until now, the electrical properties of grain boundaries have been indirectly studied without accurate knowledge of their location. Here, we present a technique to measure the electrical behavior of individual grain boundaries in CVD-grown MoS2, imaged with the help of aligned liquid crystals. Unexpectedly, the electrical conductance decreased by three orders of magnitude for the grain boundaries with the lowest on/off ratio. Our study provides a useful technique to fabricate devices on a single-crystal area, using optimized growth conditions and device geometry. The photoresponse, studied within a MoS2 single grain, showed that the device responsivity was comparable with that of the exfoliated MoS2-based photodetectors.
The electrical and photo-electrical properties of exfoliated MoS2 were investigated in the dark and in the presence of deep ultraviolet (DUV) light under various environmental conditions (vacuum, N2 gas, air, and O2 gas). We examined the effects of environmental gases on MoS2 flakes in the dark and after DUV illumination through Raman spectroscopy and found that DUV light induced red and blue shifts of peaks (E12 g and A1 g) position in the presence of N2 and O2 gases, respectively. In the dark, the threshold voltage in the transfer characteristics of few-layer (FL) MoS2 field-effect transistors (FETs) remained almost the same in vacuum and N2 gas but shifted toward positive gate voltages in air or O2 gas because of the adsorption of oxygen atoms/molecules on the MoS2 surface. We analyzed light detection parameters such as responsivity, detectivity, external quantum efficiency, linear dynamic range, and relaxation time to characterize the photoresponse behavior of FL-MoS2 FETs under various environmental conditions. All parameters were improved in their performances in N2 gas, but deteriorated in O2 gas environment. The photocurrent decayed with a large time constant in N2 gas, but decayed with a small time constant in O2 gas. We also investigated the characteristics of the devices after passivating by Al2O3 film on the MoS2 surface. The devices became almost hysteresis-free in the transfer characteristics and stable with improved mobility. Given its outstanding performance under DUV light, the passivated device may be potentially used for applications in MoS2-based integrated optoelectronic circuits, light sensing devices, and solar cells. 相似文献