首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10944篇
  免费   2272篇
  国内免费   274篇
电工技术   76篇
综合类   249篇
化学工业   4488篇
金属工艺   419篇
机械仪表   244篇
建筑科学   75篇
矿业工程   28篇
能源动力   719篇
轻工业   603篇
水利工程   11篇
石油天然气   125篇
武器工业   7篇
无线电   1563篇
一般工业技术   4577篇
冶金工业   124篇
原子能技术   48篇
自动化技术   134篇
  2024年   78篇
  2023年   527篇
  2022年   531篇
  2021年   780篇
  2020年   766篇
  2019年   727篇
  2018年   773篇
  2017年   782篇
  2016年   775篇
  2015年   760篇
  2014年   892篇
  2013年   1004篇
  2012年   782篇
  2011年   911篇
  2010年   596篇
  2009年   645篇
  2008年   577篇
  2007年   424篇
  2006年   370篇
  2005年   271篇
  2004年   133篇
  2003年   112篇
  2002年   68篇
  2001年   50篇
  2000年   55篇
  1999年   27篇
  1998年   20篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   9篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Zinc oxide (ZnO) nanoparticles assembled in one dimension to give rod‐shaped morphology were synthesized. The effect of these ZnO nanoparticles (average particle size ~ 50 nm) as the curing agent for carboxylated nitrile rubber was studied with special attention to cure characteristics, mechanical properties, dynamic mechanical properties, and swelling. These results were compared with those of the conventional rubber grade ZnO. The study confirmed that the ZnO nanoparticles gave a better state of cure and higher maximum torque with a marginal decrease in optimum cure time and scorch time. The mechanical properties also showed an improvement. There was an increase in tensile strength by ~ 120%, elongation at break by ~ 20%, and modulus at 300% elongation by ~ 30% for the vulcanizate cured with ZnO nanoparticles, as compared with the one containing rubber grade ZnO. Dynamic mechanical analysis revealed that the vulcanizates exhibited two transitions—one occurring at lower temperature due to the Tg of the polymer, while the second at higher temperature corresponding to the hard phase arising due to the ionic structures. The second transition showed a peak broadening because of an increase in the points of interaction of ZnO nanoparticles with the matrix. The tan δ peak showed a shift towards higher Tg in the case of ZnO nanoparticle‐cured vulcanizate, indicating higher crosslinking density. This was further confirmed by volume fraction of rubber in the swollen gel and infrared spectroscopic studies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
92.
Approaches to design of zirconia pillared clays via control of the properties of pillaring species in solutions were elaborated. Structural features of pillars and Pt + Cu active components fixed at these nanoparticles were shown to determine catalytic properties of pillared clays in NOx selective reduction by hydrocarbons in the oxygen excess.  相似文献   
93.
Yacamán  M. José  Ascencio  J.A.  Tehuacanero  S.  Marín  M. 《Topics in Catalysis》2002,18(3-4):167-173
The active sites of ultra-dispersed Pt/-Al2O3 catalysts are studied using high-resolution electron microscopy, Z-contrast and dark field. In addition we have calculated using a method based in density functional theory the electrostatic potential and charge distribution of the active sites. It is conclude that the most likely Pt clusters that are formed correspond to Pt13 and Pt with icosahedral and decahedral structure. It is shown that this is consistent with the electron microscopy data.  相似文献   
94.
In this study, poly(ethylene terephthalate) (PET)/SiO2 nanocomposites were synthesized by in situ polymerization and melt‐spun to fibers. The superfine structure and properties of PET/SiO2 fibers were studied in detail by means of TEM, DSC, SEM, and a universal tensile machine. According to the TEM, SiO2 nanoparticles were well dispersed in the PET matrix at a size level of 10–20 nm. The DSC results indicated that the SiO2 nanoparticles might act as a marked nucleating agent promoting the crystallization of the PET matrix from melt but which inhibited the crystallization from the glassy state, owing to the “crosslink” interaction between the PET and SiO2 nanoparticles. The tensile strength of 5.73 MPa was obtained for the fiber from PET/0.1 wt % SiO2, which was 17% higher than that of the pure PET. The fibers were treated with aqueous NaOH. SEM photographs showed that more and deeper pits were introduced onto PET fibers, which provided shortcuts for disperse dye and diffused the reflection to a great extent. According to the K/S values, the color strength of the dyeing increased with increasing SiO2 content. It is found that the deep dyeability of PET fibers was improved greatly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
95.
Xuping Sun 《Polymer》2004,45(7):2181-2184
Polyelectrolyte-protected gold nanoparticles have been facilely obtained by heating an amine-containing polyelectrolyte/HAuCl4 aqueous solution without the additional step of introducing other reducing agents. All experimental data indicate that different initial molar ratio of polyelectrolyte to gold can lead to the formation of dispersed nanoparticles, quasi one-dimensional aggregates of nanoparticles or bulk metal deposits. More importantly, the growth kinetics of gold particles thus formed can be tuned by changing the initial molar ratio of polyelectrolyte to gold.  相似文献   
96.
Arc Spray Nanoparticle Synthesis System (ASNSS) has been used to prepare the silver nanofluids in this study. The metal electrodes under the electrical discharge will melt and evaporate rapidly and condense to form the nanoparticles in the dielectric fluid at lower temperature and produce the suspended nanoparticle fluid. Thus, the mechanism of the ASNSS process is superheating the electrodes by plasma to form metallic nuclei and supercooling these nuclei by dielectric liquid to produce nanofluid. This study considers the different controlling parameters such as discharge current,discharge voltage, pulse-duration time, electrode diameter, and the temperature of dielectric liquid. The optimally operated parameters can be obtained to produce the finer particle size in nanofluid. The results indicate the silver electrodes in alcohol fluid will produce the spherical nanosilver particles. The mean particle size of silver in different dielectric liquid temperatures of-40, -20, 0, and 10℃ is about13.4, 15.8, 17.5, and 21.6 nm, respectively. This indicates that the well suspended fluid can be obtained by controlling the lower dielectric fluid temperature.  相似文献   
97.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   
98.
采用混合组装技术,利用植酸胶束(IP6micelles)的磷酸酯键络合辣根过氧化物酶(HRP)和金纳米粒子(GNPs),形成了具有生物亲和性的纳米复合材料,保持了辣根过氧化物酶的生物活性,并利用金纳米粒子的高电子密度、介电特性和催化性能,实现了HRP与玻碳电极(GCE)表面的直接电子转移。Nafion膜的滴加能提高电极的选择性和稳定性。实验过程中借助紫外-可见吸收光谱和透射电子显微镜进行表征,实验结果证明:GNPs的高导电和高催化性能,结合植酸胶束的优良生物相容性和对酶的高负载量的特点,使得吸附在其上的HRP保持活性,制备的生物传感器能对H2O2进行电催化还原。Nafion/HRP-IP6micelles-GNPs/GCE对H2O2的线性浓度范围为5×10-7~1.15×10-5mol/L(线性相关系数r=0.993,n=9),最低检测限为0.1μmol/L(信噪比S/N=3),米氏常数为0.002 4 mmol/L。  相似文献   
99.
Nanoscale colloidal silica showed high reactivity toward curing epoxy resins to form epoxy–silica nanocomposites under mild conditions. Adding a certain amount (5000 ppm) of magnesium chloride lowered the activation energy of the reaction from 71 to 46 kJ/mol. Less and more magnesium chloride both exhibited counter action on lowering the activation energy of the curing reaction. Tin chloride dihydrate and zinc acetylacetonate hydrate were also added into the curing compositions, however, showing no significant effect on promoting the curing reaction. Through this curing reaction, epoxy–silica nanocomposites containing high silica contents up to 70 wt % were obtained. Therefore, this reaction provided a novel and convenient route in preparation of epoxy–silica nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1237–1245, 2005  相似文献   
100.
Three-dimensional (3D) long range well ordered macroporous SiCN ceramics were prepared by infiltrating sacrificial colloidal silica templates with the low molecular weight preceramic polymer, polysilazane. This was followed by a thermal curing step, pyrolysis at 1250 °C in a N2 atmosphere, and finally the removal of the templates by etching with dilute HF. The produced macroporous SiCN ceramics showed high BET surface areas (pore volume) in the range 455 m2/g (0.31 cm3/g)–250 m2/g (0.16 cm3/g) with the pore sizes of 98–578 nm, which could be tailored by controlling the sizes of the sacrificial silica spheres in the range 112–650 nm. The sphere-inversed macropores were interconnected by 50 ± 30 nm windows and 3–5 nm mesopores embedded in the porous SiCN ceramic frameworks, which resulted in a trimodal pore size distribution. The surface of the achieved porous SiCN ceramic was then modified by Pt–Ru nanoparticle depositing under mild chemical conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号