首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7832篇
  免费   754篇
  国内免费   327篇
电工技术   145篇
综合类   606篇
化学工业   2732篇
金属工艺   389篇
机械仪表   147篇
建筑科学   1345篇
矿业工程   105篇
能源动力   182篇
轻工业   372篇
水利工程   63篇
石油天然气   214篇
武器工业   24篇
无线电   423篇
一般工业技术   1912篇
冶金工业   133篇
原子能技术   64篇
自动化技术   57篇
  2024年   24篇
  2023年   137篇
  2022年   153篇
  2021年   202篇
  2020年   260篇
  2019年   295篇
  2018年   265篇
  2017年   285篇
  2016年   336篇
  2015年   346篇
  2014年   487篇
  2013年   482篇
  2012年   656篇
  2011年   629篇
  2010年   448篇
  2009年   538篇
  2008年   413篇
  2007年   565篇
  2006年   456篇
  2005年   366篇
  2004年   285篇
  2003年   211篇
  2002年   222篇
  2001年   167篇
  2000年   146篇
  1999年   122篇
  1998年   89篇
  1997年   97篇
  1996年   59篇
  1995年   36篇
  1994年   38篇
  1993年   27篇
  1992年   20篇
  1991年   22篇
  1990年   8篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1951年   6篇
排序方式: 共有8913条查询结果,搜索用时 0 毫秒
91.
Zn metal batteries have garnered considerable scientific and technological interests. However, the widespread commercial application of these batteries is impeded by the uncontrollable dendrite growth and consequent severe side effects. Herein, a functionalized separator is prepared by spraying polyaniline-modified graphene oxide (denoted as NPGO)/polyvinylidene difluoride solution directly on one side of a common separator of glass fibers (GFs). The reversible transition between protonated and deprotonated states of quinolone imide on NPGO nanosheets can facilitate the rapid desolvation and transfer of Zn2+. Therefore, the spatial electric field as well as the Zn2+ flux is effectively homogenized due to the ion-sieving effect of NPGO nanosheets that are oriented toward Zn anode. This engineering design of the NPGO@GFs separator harvests excellent rate and cycling performance (over 3000 cycles at 20 mA cm−2) for Zn metal symmetric batteries. Meanwhile, it provides an impressive commercial prospect (500 cycles with a capacity retention of 91.6% under 2000 mA g−1) for MnO2||Zn full batteries. Such a strategy can be generalized as a common way to protect metal anodes (Na, Zn, and K) in rechargeable batteries, which is highly cost-effective and scalable.  相似文献   
92.
This paper reports the optical and electrical properties of electrochemically deposited polyaniline (PANI)-cerium oxide (CeO2) hybrid nano-composite film onto indium-tin-oxide (ITO) glass substrate. UV–visible spectroscopy and I-V characteristic were performed to study the optical and electrical parameters of the electrochemically deposited film. The film exhibited a strong absorption below 400 nm (3.10 eV) with a well defined absorbance peak at around 285nm (4.35 eV). The estimated band gap of the CeO2 sample was 3.44 eV and this value is higher than bulk CeO2 powder (Eg = 3.19 eV) due to quantum confinement effect.  相似文献   
93.
Herein, hollow multishelled structure (HoMS) of Co3O4–CeO2?x nanocomposites with controllable molar ratio of Co and Ce elements is synthesized by a general strategy sequential templating approach (STA) with a facile and efficient electrostatic spray process. As a catalyst of carbon monoxide (CO) catalytic oxidation, Co3O4–CeO2?x (Co/Ce = 4/1) HoMS achieves good catalytic activity (complete conversion temperature is 166.9 °C) and stability (100 h). This performance is attributed to synergistic effects between the two components. The combination of Co3O4 and CeO2 not only generates more interfaces of Co3O4–CeO2?x, which is more favorable for the activation of oxygen, but also improves the oxidizability of Co3O4 as well as the capacity of oxygen storage of CeO2. In addition, the relatively larger effective specific surface area of the HoMS can provide more active sites, while the unique structure of HoMS can facilitate gas diffusion and maintain structural stability.  相似文献   
94.
A versatile targeted etching strategy is developed for the large‐scale synthesis of urchin‐like mesoporous TiO2 hollow spheres (UMTHS) with tunable particle size. Its key feature is the use of a low‐temperature hydrothermal reaction of surface‐fluorinated, amorphous, hydrous TiO2 solid spheres (AHTSS) under the protection of a polyvinylpyrrolidone (PVP) coating. With the confinement of PVP and water penetration, the highly porous AHTSS are selectively etched and hollowed by fluoride without destroying their spherical morphology. Meanwhile TiO2 hydrates are gradually crystallized and their growth is preferentially along anatase (101) planes, reconstructing an urchin‐like shell consisting of numerous radially arranged single‐crystal anatase nanothorns. Complex hollow structures, such as core–shell and yolk–shell structures, can also be easily synthesized via additional protection of the interior by pre‐filling AHTSS with polyethylene glycol (PEG). The hollowing transformation is elucidated by the synergetic effect of etching, PVP coating, low hydrothermal reaction temperature, and the unique microstructure of AHTSS. The synthesized UMTHS with a large surface area of up to 128.6 m2 g‐1 show excellent light‐harvesting properties and present superior performances in photocatalytic removal of gaseous nitric oxide (NO) and photoelectrochemical solar energy conversion as photoanodes for dye‐sensitized mesoscopic solar cells.  相似文献   
95.
Hepatocellular carcinoma (HCC) is one of the deadliest malignancies worldwide featured with the poor prognosis and high mortality in affected patients. Given its insensitivity to conventional systemic chemotherapy, the development of novel modalities for HCC management is highly urgent. Sonodynamic therapy (SDT) has gained considerable momentum in cancer therapy. Especially, through synergistic SDT/chemotherapy, SDT would enhance the chemotherapeutic process on inhibiting tumor growth, which holds great potential on combating HCC. In this work, we report on the design/fabrication of targeted biodegradable nanosonosensitizers based on hollow mesoporous organosilica nanoparticles (HMONs), followed by pore‐engineering including covalent anchoring of protoporphyrin (PpIX, HMONs‐PpIX) and conjugation of arginine‐glycine‐aspartic acid in order to specifically targeting HCC cells. Such nanosonosensitizers provide efficient loading and controllable stimuli‐responsive release of chemotherapeutic agents for HCC‐targeting chemotherapy, thus promoting an enhancing chemotherapeutic process via the unique sonotoxicity under ultrasound irradiation. The HMONs matrix with biologically active organic groups in the framework (disulfide bond) are endowed with intrinsic tumor microenvironment‐responsive biodegradability and improved biocompatibility/biosafety. In particular, a synergistic inhibition effect of drug‐loaded HMONs‐PpIX‐arginine‐glycine‐aspartic acid on HCC growth has been systematically demonstrated both in vitro and in vivo (84.7% inhibition rate), which brings insights and meets the versatile therapeutic requirements for HCC management.  相似文献   
96.
Hollow Cu nano/microstructures are prepared by reduction of CuSO4 · 5 H2O with glucose by using a mild hydrothermal process. The X‐ray powder diffraction and energy‐dispersive X‐ray analysis indicate that the products are pure Cu and of cubic phase. The morphology of the products can be controlled between nanotubes and microspheres assembled from hollow nanoparticles by adjusting the concentration of sodium dodecyl sulfate. A series of experiments confirm that the concentration of the glucose and NaOH also play important roles in the formation of the hollow Cu nano/microstructures.  相似文献   
97.
有机电解液聚苯胺-炭混合电容器性能研究   总被引:1,自引:0,他引:1  
采用化学氧化法合成盐酸掺杂聚苯胺,经NaOH溶液去掺杂后制得本征态聚苯胺(PANI)。以PANI为正极材料,活性炭为负极材料,使用1 mol/L LiPF6/(DMC+EC)有机电解液组装了混合电容器。通过循环伏安、交流阻抗、恒流充放电、循环寿命及漏电流等手段,对混合电容器的电化学性能进行了测试。结果表明,充电截止电压在1.5 V时,电容器比容量最高可达36.0 F/g,1 100次充放电循环后比容量保持在初始容量的94.2%。  相似文献   
98.
Hybrid metal oxides with multilayered structures exhibit unique physical and chemical properties, particularly important to heterogeneous catalysis. However, regulations of morphology, spatial location, and shell numbers of the hybrid metal oxides still remain a challenge. Herein, binary Co3O4/ZnO nanocages with multilayered structures (up to eight layers) are prepared via chemical transformation from diverse Matryoshka‐type zeolitic imidazolate frameworks (ZIFs) via a straightforward and scalable calcination method. More importantly, the obtained ZIF‐derived metal oxides (ZDMOs) with versatile layer numbers exhibit remarkable catalytic activity for both gas‐phase CO oxidation and CO2 hydrogenation reactions, which are directly related to the sophisticated shell numbers (i.e., Co3O4‐terminated layers or ZnO‐terminated layers). Particularly, in situ reflectance infrared Fourier transform spectroscopy (DRIFTS) results indicate that the promotional effects of the multilayered structures indeed exist in CO2 hydrogenation, wherein the key reaction intermediates are quite different for five‐layer and six‐layer ZDMOs. For instance, *HCOO is the predominant intermediate over the six‐layer ZDMO; on the contrary, *H3CO is the crucial species over the five‐layer ZDMO. The ZnO/Co3O4 interface should be the active sites for CO2 hydrogenation to *HCOO and *H3CO species, which are ultimately converted to the products (CH4 or methanol). Accordingly, the work here provides a convenient way to facilely engineer multilayered Co3O4/ZnO nanocomposites with precisely controlled shell numbers for heterogeneous catalysis applications.  相似文献   
99.
Aqueous rechargeable zinc–metal batteries are a promising candidate for next-generation energy storage devices due to their intrinsic high capacity, low cost, and high safety. However, uncontrollable dendrite formation is a serious problem, resulting in limited lifespan and poor coulombic efficiency of zinc–metal anodes. To address these issues, a 3D porous hollow fiber scaffold with well-dispersed TiO2, SiO2, and carbon is used as superzincophilic host materials for zinc anodes. The amorphous TiO2 and SiO2 allow for controllable nucleation and deposition of metal Zn inside the porous hollow fiber even at ultrahigh current densities. Furthermore, the as-fabricated interconnected conductive hollow SiO2 and TiO2 fiber (HSTF) possess high porosity, high conductivity, and fast ion transport. Meanwhile, the HSTF exhibits remarkable mechanical strength to sustain massive Zn loading during repeated cycles of plating/stripping. The HSTF with interconnected conductive network can build a uniform electric field, redistributing the Zn2+ ion flux and resulting in smooth and stable Zn deposition. As a result, in symmetrical cells, the Zn@HSTF electrode delivers a long cycle life of over 2000 cycles at 20 mA cm−2 with low overpotential (≈160 mV). The excellent cycling lifespan and low polarization are also realized in Zn@HSTF//MnO2 full cells.  相似文献   
100.
In this work, a facile method to deposit fast growing electrochromic multilayer films with enhanced electrochemical properties using layer‐by‐layer (LbL) self‐assembly of complex polyelectrolyte is demonstrated. Two linear polymers, poly(acrylic acid) (PAA) and polyethylenimine (PEI), are used to formulate stable complexes under specific pH to prepare polyaniline (PANI)/PAA‐PEI multilayer films via LbL deposition. By introducing polymeric complexes as building blocks, [PANI/PAA‐PEI]n films grow much faster compared with [PANI/PAA]n films, which are deposited under the same condition. Unlike the compact [PANI/PAA]n films, [PANI/PAA‐PEI]n films exhibit porous structure that is beneficial to the electrochemical process and leads to improved electrochromic properties. An enhanced optical modulation of 30% is achieved with [PANI/PAA‐PEI]30 films at 630 nm compared with the lower optical modulation of 11% measured from [PANI/PAA]30 films. The switching time of [PANI/PAA‐PEI]30 films is only half of that of [PANI/PAA]30 films, which indicates a faster redox process. Utilizing polyelectrolyte complexes as building blocks is a promising approach to prepare fast growing LbL films for high performance electrochemical device applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号