首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47718篇
  免费   4381篇
  国内免费   2561篇
电工技术   2149篇
技术理论   1篇
综合类   3552篇
化学工业   10708篇
金属工艺   3490篇
机械仪表   2721篇
建筑科学   5231篇
矿业工程   2079篇
能源动力   2401篇
轻工业   2700篇
水利工程   1025篇
石油天然气   1688篇
武器工业   785篇
无线电   2858篇
一般工业技术   8626篇
冶金工业   2927篇
原子能技术   503篇
自动化技术   1216篇
  2024年   183篇
  2023年   732篇
  2022年   1298篇
  2021年   1670篇
  2020年   1547篇
  2019年   1319篇
  2018年   1243篇
  2017年   1599篇
  2016年   1587篇
  2015年   1554篇
  2014年   2425篇
  2013年   2499篇
  2012年   2947篇
  2011年   3237篇
  2010年   2491篇
  2009年   2872篇
  2008年   2384篇
  2007年   3458篇
  2006年   3111篇
  2005年   2807篇
  2004年   2334篇
  2003年   2146篇
  2002年   1763篇
  2001年   1485篇
  2000年   1349篇
  1999年   984篇
  1998年   745篇
  1997年   605篇
  1996年   531篇
  1995年   428篇
  1994年   378篇
  1993年   263篇
  1992年   172篇
  1991年   111篇
  1990年   93篇
  1989年   94篇
  1988年   64篇
  1987年   24篇
  1986年   16篇
  1985年   20篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1979年   4篇
  1959年   5篇
  1956年   3篇
  1955年   4篇
  1951年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
22.
介绍机械制造厂燃煤锅炉的烟尘特点,分析滤料失效的原因,提出一套针对该工况的滤料解决方案。介绍针对复杂工况条件所选用的纤维种类以及复合面层原料成分配比的确定,最终选用针刺工艺加工并对该新产品的基本性能进行了测试分析。  相似文献   
23.
24.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
25.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
26.
《Ceramics International》2021,47(21):30051-30060
Hydroxyapatite (HA) is a highly regarded synthetic bone graft material. Porous HA ceramics blocks are used to substitute harvested natural bone grafts. Being similar to bone mineral, HA material integrates with the host bone through surface osteointegration and slowly resorb along with the natural bone remodeling process. The blocks in use currently have random and tortuous pore structures. The present work explores the usefulness of cage-like HA ceramic design with end-to-end open pores, with the help of in vitro cell culture methods. Such a structure, on implantation, will take up the blood factors and cells and host the bone remodeling process inside the bulk of the cage, leading to early healing. In the study, HA samples with aligned through-pores were prepared and explored in vitro, with a focus on how the pores host the cells inside and to what level the cells maintain their activity. Human osteoblast-like cells (HOS) were used, at different seeding and culturing approaches. Cell seeding was done through (i) conventional large volume cell suspension, (ii) a confined mini chamber with a limited volume of cell suspension, and (iii) placing a concentrated drop of cell suspension directly on top of the scaffold. The third approach gave the best cell adhesion and proliferation, and hence used for further explorations. A dynamic culture system was designed in-house by bifurcating the cell culture wells using vertical inserts, holding the samples horizontally with their ends open to both sides, and making the media flow across using a rocker platform. The HOS cell adhesion, viability and proliferation were tested in the HA cages, in static and dynamic culture conditions, with conventional porous ceramics as the control. The cell infiltration was deeper and the cell viability over a period of 7 days was significantly higher in dynamic culture conditions in the test samples.  相似文献   
27.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   
28.
A size-dependent governing equation is derived to investigate the torsional static behaviors of two-dimensionally functionally graded microtubes based on the modified couple stress theory. The shear modulus is assumed to vary along the tube’s length direction according to an exponential distribute function, and varies along the tube’s radius direction according to a power-law function. A generalized differential quadrature method is developed to determine the rotational angle and shear stresses. Some illustrative examples are given to investigate the effects of applied torques, the length scale parameter and various material compositions on the torsional angle and shear stresses.  相似文献   
29.
30.
Processing lithium-ion battery (LIB) electrode dispersions with water as the solvent during primary drying offers many advantages over N-methylpyrrolidone (NMP). An in-depth analysis of the comparative drying costs of LIB electrodes is discussed for both NMP- and water-based dispersion processing in terms of battery pack $/kWh. Electrode coating manufacturing and capital equipment cost savings are compared for water vs. conventional NMP organic solvent processing. A major finding of this work is that the total electrode manufacturing costs, whether water- or NMP-based, contribute about 8–9% of the total pack cost. However, it was found that up to a 2?×?reduction in electrode processing (drying and solvent recovery) cost can be expected along with a $3–6?M savings in associated plant capital equipment (for a plant producing 100,000 10-kWh Plug-in Hybrid Electric Vehicle (PHEV) batteries) using water as the electrode solvent. This paper shows a different perspective in that the most important benefits of aqueous electrode processing actually revolve around capital equipment savings and environmental stewardship and not processing cost savings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号