首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142653篇
  免费   26756篇
  国内免费   4859篇
电工技术   7842篇
技术理论   6篇
综合类   5652篇
化学工业   35307篇
金属工艺   2851篇
机械仪表   5335篇
建筑科学   8099篇
矿业工程   6709篇
能源动力   7801篇
轻工业   12503篇
水利工程   2605篇
石油天然气   18544篇
武器工业   464篇
无线电   15287篇
一般工业技术   21768篇
冶金工业   4944篇
原子能技术   1054篇
自动化技术   17497篇
  2024年   359篇
  2023年   1313篇
  2022年   2445篇
  2021年   3498篇
  2020年   6063篇
  2019年   8156篇
  2018年   7411篇
  2017年   8264篇
  2016年   8707篇
  2015年   8506篇
  2014年   10755篇
  2013年   10797篇
  2012年   11334篇
  2011年   11151篇
  2010年   8122篇
  2009年   7648篇
  2008年   7048篇
  2007年   7688篇
  2006年   7719篇
  2005年   6358篇
  2004年   5486篇
  2003年   5010篇
  2002年   4380篇
  2001年   3830篇
  2000年   3308篇
  1999年   2341篇
  1998年   1222篇
  1997年   1041篇
  1996年   848篇
  1995年   700篇
  1994年   599篇
  1993年   427篇
  1992年   368篇
  1991年   264篇
  1990年   210篇
  1989年   200篇
  1988年   100篇
  1987年   62篇
  1986年   104篇
  1985年   52篇
  1984年   48篇
  1983年   39篇
  1982年   26篇
  1981年   70篇
  1980年   45篇
  1979年   16篇
  1976年   8篇
  1966年   9篇
  1964年   20篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
BACKGROUND: Xylitol bioproduction from lignocellulosic residues comprises hydrolysis of the hemicellulose, detoxification of the hydrolysate, bioconversion of the xylose, and recovery of xylitol from the fermented hydrolysate. There are relatively few reports on xylitol recovery from fermented media. In the present study, ion‐exchange resins were used to clarify a fermented wheat straw hemicellulosic hydrolysate, which was then vacuum‐concentrated and submitted to cooling in the presence of ethanol for xylitol crystallization. RESULTS: Sequential adsorption into two anion‐exchange resins (A‐860S and A‐500PS) promoted considerable reductions in the content of soluble by‐products (up to 97.5%) and in medium coloration (99.5%). Vacuum concentration led to a dark‐colored viscous solution that inhibited xylitol crystallization. This inhibition could be overcome by mixing the concentrated medium with a commercial xylitol solution. Such a strategy led to xylitol crystals with up to 95.9% purity. The crystallization yield (43.5%) was close to that observed when using commercial xylitol solution (51.4%). CONCLUSION: The experimental data demonstrate the feasibility of using ion‐exchange resins followed by cooling in the presence of ethanol as a strategy to promote the fast recovery and purification of xylitol from hemicellulose‐derived fermentation media. Copyright © 2008 Society of Chemical Industry  相似文献   
42.
43.
Nanocomposites based on poly(butylene terephthalate) (PBT) and an organoclay (Cloisite 30B) were prepared by melt blending using a twin‐screw extruder. Two kinds of PBTs, ie PBT‐A and PBT‐B, with different inherent viscosities (ηinh), were used for this study (ηinh of PBT‐A and PBT‐B were 0.74 and 1.48, respectively). Dispersion of the clay layers in the PBT nanocomposites was characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile and dynamic mechanical properties and non‐isothermal crystallization temperatures of the nanocomposites were also examined. Nanocomposites based on the higher‐viscosity PBT (PBT‐B) showed a higher degree of exfoliation of the clay and a higher reinforcing effect when compared to the composites based on the lower‐viscosity PBT (PBT‐A). The clay nanolayers dispersed in PBT matrices lead to increases in the non‐isothermal crystallization temperatures of the PBTs, with such increases being more significant for the PBT‐B nanocomposites than for the PBT‐A nanoocomposites. Copyright © 2004 Society of Chemical Industry  相似文献   
44.
A novel series of temperature‐sensitive poly[(N‐isopropylacrylamide)‐co‐(ethyl methacrylate)] (p(NIPAM‐co‐EMA)) microgels was prepared by the surfactant‐free radical polymerization of N‐isopropylacrylamide (NIPAM) with ethyl methacrylate (EMA). The shape, size dispersity and volume‐phase transition behavior of the microgels were investigated by transmission electron microscopy (TEM), ultraviolet–visible (UV–Vis) spectroscopy, dynamic light scattering (DLS) and differential scanning calorimetry (DSC). The transmission electron micrographs and DLS results showed that microgels with narrow distributions were prepared. It was shown from UV–Vis, DLS and DSC measurements that the volume‐phase transition temperature (VPTT) of the p(NIPAM‐co‐EMA) microgels decreased with increasing incorporation of EMA, but the temperature‐sensitivity was impaired when more EMA was incorporated, causing the volume‐phase transition of the microgels to become more continuous. It is noteworthy that incorporation of moderate amounts of EMA could not only lower the VPTT but also enhance the temperature‐sensitivity of the microgels. The reason for this phenomenon could be attributed to changes in the complicated interactions between the various molecules. Copyright © 2004 Society of Chemical Industry  相似文献   
45.
Significant increases in the activity of vanadium(III) amidinate catalysts for ethylene polymerization have been obtained by immobilization on a MgCl2‐based support prepared by reaction of AlEt3 with a MgCl2/ethanol adduct. Catalyst immobilization and activation on this type of support prevents the rapid decay in activity observed under homogeneous polymerization conditions with unsupported catalysts. Stable polymerization activity is also observed with analogous titanium(III) complexes. Polyethylene with narrow molecular weight distribution and spherical particle morphology is obtained without reactor fouling. Copyright © 2005 Society of Chemical Industry  相似文献   
46.
The electron‐spin‐resonance (ESR) spin‐probe method, was used to study the heterogeneity of denture resins based on poly(methyl methacrylate). Results for three resins processed by microwave energy, conventional curing and cold curing (depending on the curing procedure and exposed to ageing in various environmental conditions) were compared. All three cured resins were stored over the same time (1200 h) in distilled water at ambient temperature and in artificial saliva at 348 K. The temperature‐dependent ESR spectra of a spin probe dispersed in the denture resins are analyzed in terms of line‐shapes and line‐widths. The appearance of two spectral components was taken as an indication of resin heterogeneity. The results reveal that the cold‐cured resin has a lower local density in comparison with microwave and conventionally cured resin. The amount of residual monomer also contributes to the local motion of polymer segments. The change of denture resins exposed to ageing is influenced both by the structure of the original resin and the ageing conditions. Restricted motion of a spin probe incorporated into the acrylic resins exposed to accelerated ageing suggests additional crosslinking of polymer chains. The differences are observed for all the investigated resins, but the highest change is observed with the cold‐cured resin. The ESR results are accompanied by Tg and Tm measurements. Copyright © 2005 Society of Chemical Industry  相似文献   
47.
Polyacrylonitrile terpolymers of various compositions consisting of acrylonitrile (AN), itaconic acid (IA) and methyl acrylate (MA) were synthesized by solution polymerization in dimethylsulfoxide. Increase in concentration of either IA or MA retarded the overall polymerization rate and the polymer molecular weight. The system consisting of AN + MA and varying IA concentration was more prone to retardation in comparison with the system composed of AN + IA with variable MA concentration. The retardation factors were quantified. Minor quantities of MA boost the reactivity of IA in the terpolymer system. The terpolymer was richer in MA vis‐à‐vis the feed. The thermal characteristics of the terpolymer were examined as a function of its composition. In contrast to the copolymer of AN and IA requiring 1–1.5 mol% IA, the terpolymer required an IA content of approximately 2.5 mol% for optimum thermal stability. The polymer with 90 mol% AN, 2.5 mol% IA and 7.5 mol% MA exhibited reasonably good char‐forming characteristics and thermal stability. The overall crystallinity and crystallite size of the polymers were found to decrease on incorporation of the comonomers. The ‘aromatization index’ of the copolymer increased with the temperature of pyrolysis through re‐organization of the tetrahydropyridine ladder structure. Copyright © 2005 Society of Chemical Industry  相似文献   
48.
49.
Poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐para‐phenylene vinylene] (MEH‐PPV)/silica nanoparticle hybrid films were prepared and characterised. Three kinds of materials were compared: parent MEH‐PPV, MEH‐PPV/silica (hybrid A films), and MEH‐PPV/coupling agent MSMA/silica (hybrid B films), in which MSMA is 3‐(trimethoxysilyl) propyl methacrylate. It was found that the hybrid B films could significantly prevent macrophase separation, as evidenced by scanning electron and fluorescence microscopy. Furthermore, the thermal characteristics of the hybrid films were largely improved in comparison with the parent MEH‐PPV. The UV‐visible absorption spectra suggested that the incorporation of MSMA‐modified silica into MEH‐PPV could confine the polymer chain between nanoparticles and thus increase the conjugation length. The photoluminescence (PL) studies also indicated enhancement of the PL intensity and quantum efficiency by incorporating just 2 wt% of MSMA‐modified silica into MEH‐PPV. However, hybrid A films did not show such enhancement of optoelectronic properties as the hybrid B films. The present study suggests the importance of the interface between the luminescent organic polymers and the inorganic silica on morphology and optoelectronic properties. Copyright © 2004 Society of Chemical Industry  相似文献   
50.
Biodegradable multiblock poloxamers (BMPs) with gel duration of 8 h to several weeks were prepared by varying their molecular weights from 4000 to 40 000 g mol?1. The molecular weight of the BMP was controlled by changing the poloxamer to coupling agent ratio. Assuming a micelle packing model of the BMP gel, as in the case of a poloxamer gel, the micelle properties and critical gel concentration of BMPs were investigated on the basis of the scaling concept. The findings suggest that the control of molecular weight by hydrolyzable groups can be a facile approach to optimize the gel properties for biomedical applications. Copyright © 2005 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号