首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19465篇
  免费   1528篇
  国内免费   480篇
电工技术   620篇
综合类   1046篇
化学工业   9202篇
金属工艺   240篇
机械仪表   326篇
建筑科学   1332篇
矿业工程   148篇
能源动力   2639篇
轻工业   1605篇
水利工程   158篇
石油天然气   488篇
武器工业   19篇
无线电   282篇
一般工业技术   2636篇
冶金工业   313篇
原子能技术   121篇
自动化技术   298篇
  2024年   73篇
  2023年   351篇
  2022年   670篇
  2021年   821篇
  2020年   733篇
  2019年   640篇
  2018年   445篇
  2017年   580篇
  2016年   512篇
  2015年   513篇
  2014年   1009篇
  2013年   996篇
  2012年   1501篇
  2011年   1457篇
  2010年   1190篇
  2009年   1100篇
  2008年   951篇
  2007年   1250篇
  2006年   1023篇
  2005年   942篇
  2004年   807篇
  2003年   733篇
  2002年   531篇
  2001年   452篇
  2000年   424篇
  1999年   368篇
  1998年   297篇
  1997年   233篇
  1996年   184篇
  1995年   127篇
  1994年   140篇
  1993年   122篇
  1992年   89篇
  1991年   61篇
  1990年   36篇
  1989年   16篇
  1988年   22篇
  1987年   12篇
  1986年   13篇
  1985年   8篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   5篇
  1977年   1篇
  1976年   1篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
《Ceramics International》2023,49(10):15377-15386
The development of new carbon materials for high-energy-density supercapacitors and efficient filter membranes is still challenging. In this work, a novel biomass carbon material with large specific surface area and high oxygen content was fabricated for high-energy and environmental applications. The as-obtained carbon material exhibited high specific capacitance of 437 F g-1 at 1 A g-1 with superior capacitance retention of 90.9% after 100,000 cycles even at 100 A g-1 in H2SO4 electrolyte when tested in a three-electrode setup. The material also showed elevated specific capacitance in metal ion electrolyte, conducive to expanding its applications in aqueous metal ion supercapacitors. After assembly into a symmetric supercapacitor, the material showed an excellent energy density of 39.33 Wh kg-1 with outstanding capacitance retention of 125% after 100,000 GCD charge/discharge cycles at 20 A g-1. A new membrane was also prepared using the fabricated carbon material for the removal of different pollutants, such as heavy metal ions, antibiotics, and dyes. The tests revealed the new carbon-based membrane to exhibit an ultra-high flux of 1200 L m-2 h-1 bar-1 toward different pollutants with substantial rejection of ciprofloxacin (93.1%). Overall, this work provided a new research paradigm for the multifunctional application and theoretical exploration of novel carbon-based materials.  相似文献   
992.
Ceramic membranes with high porosity and excellent separation efficiency are necessary for the efficient treatment of large-scale wastewaters. However, the conventional ceramic membranes are usually prepared by particles-packing, which inhibits the advances of separation efficiency because of the low porosity and connectivity. Here, a fibrous ceramic membrane with mullite whiskers-interlocked structure was prepared by gas-solid reaction. The effects of aluminum fluoride (AlF3) on the formation and growth of mullite whiskers, and then the permeability and selectivity of the ceramic membranes were investigated. With the increase of AlF3 contents, the mullite phase evolved from needle-like, rod-like to flake-like structure, thus the catalyst accelerated the growth of mullite whiskers in the diameter direction. For the ceramic membrane sintered at 1400°C, the porosity increased from 58% to 76% while the average pore sizes increased from 0.65 to 3.93 μm because of the whisker-constructed structures. For the ceramic membrane sintered at 1450°C, the emulsion flux increased stably from 295 L/(m2·h) to 992 L/(m2·h) with the increase of trans-membrane pressure, and the oil rejection exceeded 98%. Thus, this study provides a feasible strategy for the preparation of ceramic membranes with high porosity and excellent separation performances.  相似文献   
993.
How to simultaneously improved the proton conductivity and mechanical strength is a key problem facing currently used proton exchange membranes (PEMs). Herein, a solid inorganic superacid-zirconium phosphate (ZrP) with a two-dimensional layer structure was combined with one-dimensional carbon nanotubes (CNTs) to prepare hybrid nanofiller ZrP-CNTs by an in situ chemical deposition method. The new hybrid nanofiller was then applied to modify sulfonated polyether ether ketone (SPEEK), a widely used PEM matrix, to obtain a series of composite membranes. The structure and properties of the membranes were fully characterized by SEM, XRD, FTIR, TG, tensile properties, and proton conductivity. The results showed that the proton conductivities of the membranes were significantly improved due to the addition of super solid acid-ZrP that has abundant proton sources or proton sites. Moreover, the composite membranes exhibited better mechanical properties and thermal stability than those of pure SPEEK membrane, owing to the great interface interaction and good compatibility between ZrP-CNTs and SPEEK. The composite membrane (2 wt% ZrP-CNTs) demonstrated the optimal comprehensive performance. Its proton conductivity was 36.63 mS cm−1 and its tensile strength was 37.56 MPa, which was 70% and 10%, respectively, higher than those of the pure SPEEK membrane under the same condition.  相似文献   
994.
Direct ethanol fuel cells (DEFCs) offer a high degree of design flexibility, ranging from a single cell to a massive multi-cell that can be used in various applications, including portable devices, transportation, and stationary applications. Unfortunately, the most significant barrier to the commercialization of DEFCs is getting low-cost and ethanol permeability, high conductivity performance, and extended durability of polymer electrolyte membranes, as key components that highly influence the overall performance. In this paper, the recent progress in developing the polymer electrolyte membrane for the application of DEFCs has been comprehensively reviewed. Focusing on an updated modification of polymeric materials in the last 5 years, including Nafion-based membrane, polyvinyl alcohol-based membrane, polybenzimidazoles-based membrane, chitosan-based membrane, and sodium alginate-based membrane, as well as factors and challenges that affected the performance of polymer electrolyte membranes have been discussed, including the main characterization, catalyst selection, cell design, and work in membrane and cell performance of DEFCs. All discussion addresses the strategy to improve the performance of polymer electrolyte membranes in DEFCs in order to penetrate the commercialization stages.  相似文献   
995.
利用静电纺丝技术制备了聚吲哚/聚丙烯腈(PIN/PAN)聚合物基电解质膜,代替纸基铝空气电池中的纤维素纸(C-P),并应用于固态铝空气电池。探究了PIN含量对电解质膜离子电导率及吸液率的影响。采用SEM和FTIR对PIN/PAN聚合物基电解质膜表面形貌及化学组成进行分析。借助电化学工作站和电池测试系统,分析了电解质膜离子电导率及固态铝空气电池放电特性。结果表明,采用PIN/PAN聚合物基电解质膜可有效提升固态铝空气电池性能,在3 mA.cm-2、5 mA.cm-2、7 mA.cm-2电流密度下,放电时长比纸基铝空气电池分别提升了21%、27%、34%,且放电时长与电解质膜的吸液率及离子电导率相关。其中4%PIN/PAN聚合物基电解质膜离子电导率可达6.7×10-4 S.cm-1,同时对碱性溶液具有良好的吸附能力,吸液率最高可达496%,为纤维素纸的3.2倍。  相似文献   
996.
Several multilayer thin low‐density polyethylene (LDPE) films were fabricated by blown thin film having a thickness of 7 μm and an area of 130 cm2. They were characterized for their oxygen‐enrichment performance from air by a constant pressure–variable volume method in a round permeate cell with an effective area of 73.9 cm2. The relationship between oxygen‐enrichment properties, including oxygen‐enriched air (OEA) flux, oxygen concentration, permeability coefficients of OEA, oxygen, nitrogen, as well as separation factor through the multilayer LDPE films, and operating parameters, including transfilm pressure difference, retentate/permeate flux ratio, temperature, as well as layer number, are all discussed in detail. It is found that all of the preceding oxygen‐enrichment parameters increase continuously with an increase of transfilm pressure difference from 0.1 to 0.65 MPa, especially for the trilayer and tetralayer LDPE films. The oxygen concentration and separation factor appear to rapidly increase within the retentate/permeate flux ratio below 200, and then become unchangeable beyond that, whereas the OEA flux and the permeability coefficients of OEA, oxygen, and nitrogen seem to remain nearly constant within the whole retentate/permeate flux ratio investigated, especially for the monolayer and bilayer LDPE films. The selectivity becomes inferior, whereas the permeability becomes superior, as the operating temperature increases from 23 to 31°C. The highest oxygen concentration was found to be 44.8% for monolayer LDPE film in a single step with air containing oxygen of 20.9% as a feed gas and operating pressure of 0.5 MPa at a retentate/permeate flux ratio of 340 and 23°C. The results demonstrate a possibility to prepare an oxygen‐enriching membrane directly from air, based on the easily obtained thin LDPE films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3013–3021, 2002; DOI 10.1002/app.2331  相似文献   
997.
Binary blends and their blend membranes of cellulose acetate (CA) and poly(vinyl butyral) (PVB) are prepared by solution blending. The compatibility of the blends is studied by viscometry and Fourier transform IR. It is found that the incompatibility of the blends is markedly manifested when the weight fraction of PVB in the CA/PVB blends (WPVB) is located at higher regions. On the other hand, compatibility is obtained for the CA/PVB blends with lower WPVB values, especially at about 0.2. This compatibility is believed to play a key role in the good pervaporation behavior of CA/PVB blend membranes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2434–2439, 2002  相似文献   
998.
The hydrodynamic characteristics and mass transfers of halide quaternary salts between two immiscible phases in a stirred membrane permeation cell were investigated. The concentration of quaternary salt, temperature, solvent and the four kinds of halide quaternary salts were evaluated to achieve the extractive optimum condition. The diffusivity, overall mass‐transfer coefficients and individual mass‐transfer coefficients were determined and correlated in terms of the conventional Sh‐Re‐Sc relationship. The transfer time of quaternary salts across the membrane and the thickness of the hydrodynamic diffusion boundary layer were determined as well, so as to characterize the extractive phenomenon of quaternary salts between the two phases that is useful in phase‐transfer catalysis.  相似文献   
999.
Microporous polyethylene (PE) hollow fiber membrane with a porosity of 43% and N2 permeation of 4.96 cm3 (STP)/cm2 s cmHg was prepared by melt‐spinning and cold‐stretching method. It was found that PE with a density higher than 0.96 g/cm3 should be used for the preparation of microporous PE hollow fiber membranes. By increasing the spin–draw ratio, both the porosity and the N2 permeation of the hollow fiber membranes increased. Annealing the nascent hollow fiber at 115°C for 2 h was suitable for attaining membranes with good performance. By straining the hollow fiber to higher extensions, the amount and size of the micropores in the hollow fiber wall increased, and the N2 permeation of the membranes increased accordingly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 203–210, 2002; DOI 10.1002/app.10305  相似文献   
1000.
ET‐g‐PAAc membranes were obtained by radiation grafting of acrylic acid onto poly(tetrafluoroethylene–ethylene) copolymer films using a mutual technique. The ion selectivity of the grafted membranes was determined toward K+, Ag+, Hg2+, Co2+, and Cu2+ in a mixed aqueous solution. The ion‐exchange capacity of the grafted membranes was measured by back titration and atomic absorption spectroscopy. The Hg2+ ion content of the membrane was more than that of either the K+ or Ag+ ions. The presence of metal ions in the membranes was studied by infrared and energy‐dispersive spectroscopy measurements. Scanning electron microscopy of the grafted and metal‐treated grafted membranes showed modification of the morphology of the surface due to the adsorption of K+ and Ag+ ions. No change was observed for the surface of the membrane that was treated with Hg2+ ions. The thermal stability of different membranes was improved more with Ag+ and Hg2+ ions than with K+ ions. It was found that the modified grafted membranes possessed good hydrophilicity, which may make them promising candidates for practical applications, such as for cation‐exchange membranes in the recovery of metals from an aqueous solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2692–2698, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号