首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4460篇
  免费   1044篇
  国内免费   101篇
电工技术   703篇
综合类   234篇
化学工业   343篇
金属工艺   60篇
机械仪表   149篇
建筑科学   31篇
矿业工程   38篇
能源动力   63篇
轻工业   81篇
水利工程   5篇
石油天然气   14篇
武器工业   32篇
无线电   1918篇
一般工业技术   1542篇
冶金工业   64篇
原子能技术   65篇
自动化技术   263篇
  2024年   25篇
  2023年   169篇
  2022年   80篇
  2021年   182篇
  2020年   242篇
  2019年   215篇
  2018年   195篇
  2017年   232篇
  2016年   250篇
  2015年   289篇
  2014年   351篇
  2013年   306篇
  2012年   299篇
  2011年   375篇
  2010年   269篇
  2009年   284篇
  2008年   262篇
  2007年   259篇
  2006年   321篇
  2005年   256篇
  2004年   185篇
  2003年   129篇
  2002年   96篇
  2001年   63篇
  2000年   45篇
  1999年   39篇
  1998年   27篇
  1997年   20篇
  1996年   21篇
  1995年   20篇
  1994年   24篇
  1993年   11篇
  1992年   11篇
  1991年   3篇
  1990年   20篇
  1989年   7篇
  1988年   6篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1966年   1篇
  1964年   1篇
  1959年   1篇
  1955年   3篇
  1951年   1篇
排序方式: 共有5605条查询结果,搜索用时 31 毫秒
61.
Conventional elastomeric polymers used as substrates for wearable platforms have large positive Poisson's ratios (≈0.5) that cause a deformation mismatch with human skin that is multidirectionally elongated under bending of joints. This causes practical problems in elastomer-based wearable devices, such as delamination and detachment, leading to poorly reliable functionality. To overcome this issue, auxetic-structured mechanical reinforcement with glass fibers is applied to the elastomeric film, resulting in a negative Poisson's ratio (NPR), which is a skin-like stretchable substrate (SLSS). Several parameters for determining the materials and geometrical dimensions of the auxetic-structured reinforcing fillers are considered to maximize the NPR. Based on numerical simulation and digital image correlation analysis, the deformation tendencies and strain distribution of the SLSS are investigated and compared with those of the pristine elastomeric substrate. Owing to the strain-localization characteristics, an independent strain-pressure sensing system is fabricated using SLSS with a Ag-based elastomeric ink and a carbon nanotube-based force-sensitive resistor. Finally, it is demonstrated that the SLSS-based sensor platform can be applied as a wearable device to monitor the physical burden on the wrist in real time.  相似文献   
62.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   
63.
The complementary electrochromic device, where the optical transmittance changes upon the flow of cations back and forth between anodic and cathodic electrodes, operates in a rocking-chair fashion if it can inherently self-discharge. Herein, the first demonstration of a dual-mode electrochromic platform having self-coloring and self-bleaching characteristics is reported, which is realized by sandwiching zinc metal within a newly-designed Prussian blue (PB)-WO3 rocking-chair type electrochromic device. It is demonstrated that the redox potential differences between the zinc metal and the WO3/PB electrodes endow the self-color-switching of these electrodes. By employing a hybrid electrolyte of Zn2+/K+, it is further shown that the colored PB-WO3 rocking-chair device is capable of spontaneously bleaching when the anodic and cathodic electrodes are coupled. This dual-mode light-control strategy enables the electrochromic devices to exhibit four distinct optical states with the highest optical contrast of 72.6% and fast switching times (<5 s for the bleaching/coloration processes). Furthermore, the built-in voltage of the dual-mode electrochromic devices not only promotes energy efficiency, but also augments the bistability of the devices. It is envisioned that the broad implication of the present platform is in the development of self-powered smart windows, colorful displays, optoelectronic switches, and optical sensors.  相似文献   
64.
Extreme environments are often faced in energy, transportation, aerospace, and defense applications and pose a technical challenge in sensing. Piezoelectric sensor based on single-crystalline AlN transducers is developed to address this challenge. The pressure sensor shows high sensitivities of 0.4–0.5 mV per psi up to 900 °C and output voltages from 73.3 to 143.2 mV for input gas pressure range of 50 to 200 psi at 800 °C. The sensitivity and output voltage also exhibit the dependence on temperature due to two origins. A decrease in elastic modulus (Young's modulus) of the diaphragm slightly enhances the sensitivity and the generation of free carriers degrades the voltage output beyond 800 °C, which also matches with theoretical estimation. The performance characteristics of the sensor are also compared with polycrystalline AlN and single-crystalline GaN thin films to investigate the importance of single crystallinity on the piezoelectric effect and bandgap energy-related free carrier generation in piezoelectric devices for high-temperature operation. The operation of the sensor at 900 °C is amongst the highest for pressure sensors and the inherent properties of AlN including chemical and thermal stability and radiation resistance indicate this approach offers a new solution for sensing in extreme environments.  相似文献   
65.
3D printing of conductive elastomers is a promising route to personalized health monitoring applications due to its flexibility and biocompatibility. Here, a one-part, highly conductive, flexible, stretchable, 3D printable carbon nanotube (CNT)-silicone composite is developed and thoroughly characterized. The one-part nature of the inks: i) enables printing without prior mixing and cures under ambient conditions; ii) allows direct dispensing at ≈100 µm resolution printability on nonpolar and polar substrates; iii) forms both self-supporting and high-aspect-ratio structures, key aspects in additive biomanufacturing that eliminate the need for sacrificial layers; and iv) lends efficient, reproducible, and highly sensitive responses to various tensile and compressive stimuli. The high electrical and thermal conductivity of the CNT-silicone composite is further extended to facilitate use as a flexible and stretchable heating element, with applications in body temperature regulation, water distillation, and dual temperature sensing and Joule heating. Overall, the facile fabrication of this composite points to excellent synergy with direct ink writing and can be used to prepare patient-specific wearable electronics for motion detection and cardiac and respiratory monitoring devices and toward advanced personal health tracking and bionic skin applications.  相似文献   
66.
Electrocardiogram (ECG) mapping can provide vital information in sports training and cardiac disease diagnosis. However, most electronic devices for monitoring ECG signals need to use multiple long wires, which limit their wearability and conformability in practical applications, while wearable ECG mapping based on integrated sensor arrays has been rarely reported. Herein, ultra-flexible organic electrochemical transistor (OECT) arrays used for wearable ECG mapping on the skin surface above a human heart are presented. QRS complexes of ECG signals at different recording distances and directions relative to the heart are obtained. Furthermore, the ECG signals are successfully analyzed by the devices before and after exercise, indicating potential applications in some sports training and fitness scenarios. The OECT arrays that can conveniently monitor spacial ECG signals in the heart region may find niche applications in wearable electronics and healthcare products in the future.  相似文献   
67.
As a nontoxic and cost-effective material, copper pastes have attracted great attention in both academia and industry. However, achieving the long-term stability of copper pastes remains challenging due to their susceptibility to oxidation. Therefore, stable copper nanoparticles with a Cu(0)–Cu(I) core–shell structure containing a surface passivation layer of formate ions-involved Cu(I) coordination polymers are developed. Based on the self-reducing nature of the passivation layer, the nanoparticle-based copper pastes can be sintered in <1 min, showing high electrical conductivity (220 000 S cm−1), mechanical flexibility, and long-term stability after sintering. The excellent properties of the developed copper pastes are even comparable with the ones of silver pastes. These stable copper pastes have broad applications in printed electronics (e.g., glucose sensors, RFID tags, and electromagnetic shielding films), showing great potential in the fabrication of flexible printed electronics.  相似文献   
68.
Polymer-dispersed liquid crystal (PDLC) devices are truly promising optical modulators for information display, smart window as well as intelligent photoelectronic applications due to their fast switching, large optical modulation as well as cost-effectiveness. However, realizing highly soft PDLC devices with sensing function remains a grand challenge because of the intrinsic brittleness of traditional transparent conductive electrodes. Here, inspired by spiderweb configuration, a novel type of silver nanowires (AgNWs) micromesh-based stretchable transparent conductive electrodes (STCEs) is developed to support the realization of soft PDLC device. Benefiting from the embedding design of AgNWs micromesh in polydimethylsiloxane (PDMS), the STCEs can maintain excellent electrical conductivity and transparency even in various extreme conditions such as bending, folding, twisting, stretching as well as multiple chemical corrosion. Further, STCEs with the embedded AgNWs micromesh endow the assembled PDLC device with excellent photoelectrical properties including rapid switching speed (<1 s), large optical modulation (69% at 600 nm), as well as robust mechanical stability (bending over 1000 cycles and stretching to 40%). Moreover, the device displays the pressure sensing function with high sensitivity in response to pressure stimulus. It is conceivable that AgNWs micromesh transparent electrodes will shape the next generation of related soft smart electronics.  相似文献   
69.
为了将水清洗机接入工业网络并实现智能自动化控制,本文提出了一种基于统计过程控制(SPC)可重构程序的水清洗控制系统.该系统根据水清洗设备的参数和组件特性构建了该设备的控制协议;根据协议指令制定了指令判断模块;根据SPC理论设计了过程控制模块.控制协议让该系统的清洗程序具有重构和联网的功能;指令判断模块为重构后的指令提供了安全性保障;过程控制模块让该系统的清洗过程具备动态调整清洗组件的功能.这些功能使得该设备可以实现智能自动化控制.通过测试,该系统比原有系统的清洗次数平均减少了15%,水清洗液的使用率提升了约5%,并扩展了3项功能,提高了设备的利用率和智能化水平,最终满足节能省水、多用途和联网的需求.  相似文献   
70.
3D conformable electronic devices on freeform surfaces show superior performance to the conventional, planar ones. They represent a trend of future electronics and have witnessed exponential growth in various applications. However, their potential is largely limited by a lack of sophisticated fabrication techniques. To tackle this challenge, a new direct freeform laser (DFL) fabrication method enabled by a 5-axis laser processing platform for directly fabricating 3D conformable electronics on targeted arbitrary surfaces is reported. Accordingly, representative laser-induced graphene (LIG), metals, and metal oxides are successfully fabricated as high-performance sensing and electrode materials from different material precursors on various types of substrates for applications in temperature/light/gas sensing, energy storage, and printed circuit board for circuit. Last but not the least, to demonstrate an application in smart homes, LIG-based conformable strain sensors are fabricated and distributed in designated locations of an artificial tree. The distributed sensors have the capability of monitoring the wind speed and direction with the assistance of well-trained machine-learning models. This novel process will pave a new and general route to fabricating 3D conformable electronic devices, thus creating new opportunities in robotics, biomedical sensing, structural health, environmental monitoring, and Internet of Things applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号