首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2391篇
  免费   308篇
  国内免费   57篇
电工技术   186篇
综合类   49篇
化学工业   1014篇
金属工艺   54篇
机械仪表   16篇
建筑科学   21篇
矿业工程   13篇
能源动力   259篇
轻工业   85篇
水利工程   5篇
石油天然气   39篇
武器工业   2篇
无线电   401篇
一般工业技术   523篇
冶金工业   51篇
原子能技术   27篇
自动化技术   11篇
  2024年   15篇
  2023年   229篇
  2022年   60篇
  2021年   178篇
  2020年   183篇
  2019年   138篇
  2018年   99篇
  2017年   97篇
  2016年   88篇
  2015年   83篇
  2014年   117篇
  2013年   124篇
  2012年   100篇
  2011年   127篇
  2010年   98篇
  2009年   95篇
  2008年   107篇
  2007年   110篇
  2006年   98篇
  2005年   81篇
  2004年   61篇
  2003年   63篇
  2002年   72篇
  2001年   49篇
  2000年   45篇
  1999年   32篇
  1998年   38篇
  1997年   29篇
  1996年   25篇
  1995年   10篇
  1994年   15篇
  1993年   15篇
  1992年   18篇
  1991年   10篇
  1990年   7篇
  1989年   3篇
  1988年   13篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1951年   2篇
排序方式: 共有2756条查询结果,搜索用时 718 毫秒
91.
锂离子电池电解质盐双草酸硼酸锂的研究进展   总被引:2,自引:0,他引:2  
王赛  仇卫华  余碧涛  赵海雷 《电池》2006,36(3):231-233
介绍了双草酸硼酸锂(LiBOB)的基本性质,综述了LiBOB合成方法和应用情况,并对LiBOB与石墨负极匹配、高温稳定性、在溶剂中的溶解性、电导率和安全性等问题进行了论述,对研究方向也进行了简单的阐述。  相似文献   
92.
93.
To explore their possible application as solid electrolytes in Solid Oxide Fuel Cells (SOFC), this contribution presents the synthesis, characterization and electrical properties of Ln4Zr3O12 (Ln = Y, Ho, Er and Yb) zirconates. All samples were obtained by mechanical milling and their electrical properties were analyzed as a function of frequency and temperature, by using impedance spectroscopy. Our results show that defective fluorite-type zirconates might be successfully obtained after milling stoichiometric mixtures of the corresponding oxides, for 30–40 h in a planetary mill. Such structural form persists even after firing the as-prepared Y, Ho and Er zirconates, at very high temperatures (1500 °C); whereas, Yb4Zr3O12 shows a transition to a rhombohedral δ-phase on firing. Ionic conductivity (σ) values obtained for all compositions at 700 °C (including fluorites and δ-phase), are comparable to those reported for similar ionic conductors, and within the 10−3.82 to 10−6.13 S cm−1 range. Higher σ values were obtained for those zirconates preserving the disordered fluorite-type structure after firing.  相似文献   
94.
To stabilize bromine produced during a vanadium-bromine redox flow batteries (VBr RFBs) charging, a bromine complexing agent (BCA) should be effectively used as a supporting material in VBr electrolyte. However, there remains a problem of improving the unstable reversibility between V2+ and V3+ in electrolyte including halogen elements (Br and Cl). This paper describes two imidazole-based BCAs, which are 1,2-dimethyl-3-ethylimidazolium bromide (DMEIm: C7H13BrN2) and 1,2-dimethyl-3-propylimidazolium bromide (DMPIm: C8H15BrN2), for not only confirming the capture of bromine but also improving the redox reaction of vanadium ions in VBr electrolyte. The effectiveness of the proposed two imidazole-based BCAs is demonstrated through the following experiments: cyclic voltammetry (CV), nuclear magnetic resonance analysis (NMR), scanning electron microscopy (SEM) analysis and cyclic cell operation test. Experimental results show that both the diffusion coefficient and the peak currents of each electrolyte using the proposed imidazole-based BCAs increases linearly with the rise of scan rate on the recorded CV curves, providing improved reversible reaction of V2+/V3+ in negative electrolyte. It also exhibits that the electrolytes using the DMEIm and DMPIm provide significantly improved charge (discharge) capacities which are 9.38 (31.01) % and 11.8 (35.66) % higher than the pristine one, respectively, resulting in 13.27% and 14.36% higher current efficiencies. In addition, corrosion cracks on the separator surface due to bromine attack are not observed after the cyclic cell operation. Consequently, these results indicate that the proposed two imidazole-based BCAs can not only sequester bromine during the VBr RFB charging, but also enhance electrochemical reversibility caused by improving diffusion coefficient of vanadium.  相似文献   
95.
96.
The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ $0.10 kW?1 h?1. There is also a low‐level utility scale acceptance of energy storage solutions and a general lack of battery‐specific policy‐led incentives, even though the environmental impact of RFBs coupled to renewable energy sources is favourable, especially in comparison to natural gas‐ and diesel‐fuelled spinning reserves. Together with the technological and policy aspects associated with flow batteries, recent attempts to model redox flow batteries are considered. The issues that have been addressed using modelling together with the current and future requirements of modelling are outlined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
97.
Ionic liquids (ILs) are low‐melting organic salts often liquid at room temperature, whose unique properties are the reason of increasing interest for their applications as solvents, reaction media and functional additives. The exceptional properties of ILs have proved to be particularly useful in polymer science giving the potential to produce polymeric materials with improved properties or to immobilize ILs in polymer matrices while keeping their special characteristics. One of the possibilities is polymerization in ILs which can also affect positively polymerization reactions. An especially attractive technique is photopolymerization due to the ease of process control, short reaction time and ambient working temperature. This review gives a literature survey of developments in photopolymerization processes carried out in ILs as well as applications of these processes. It covers both the photopolymerization in ILs as well as photopolymerization of IL monomers. The first part presents a short overview of physicochemical and photochemical properties of ILs; it includes also photochemical reactions and photoinitiation of polymerization in ILs. The second part covers both the basic research (kinetics of photopolymerization including polymerization rate coefficients and polymerization of IL monomers) as well as applications of UV‐induced polymerization in ILs. © 2016 Society of Chemical Industry  相似文献   
98.
Molecular relaxation and polarization phenomena of twelve single-ion-conducting nanocomposite polymer electrolytes (nCPEs) are studied using Broadband Electrical Spectroscopy (BES). The electrolytes are obtained by combining PEG400 oligomers with increasing amounts of anionic nanofiller comprised of fluorinated-TiO2 associated with Li+ cations (LiFT®), resulting in [PEG400/(LiFT)y] systems with 0 ≤ y ≤ 26.4. This new class of [PEG400/(LiFT)y] electrolytes allows us to achieve a significant single-ion conductivity (1.1·10−5 S cm−1 at 30 °C for nLi/nO = 0.113) without the addition of lithium salts. To the best of our knowledge, this is the highest conductivity value reported for this class of electrolytes. This study, in conjunction with the results reported in Part 1, leads us to hypothesize a conduction mechanism in terms of two types of long-range charge-transfer processes. The first charge-transfer occurs at the interface between the filler nanoparticles and filler-PEG domains, while the second occurs through the PEG400 matrix with the assistance of polymer segmental motion. The measured Li+ transference numbers confirm that the studied materials are single-ion conductors.  相似文献   
99.
This work introduces a new tool able to predict water activities and activity coefficients of electrolytes in binary {water–electrolyte} systems. In mixtures containing electrolytes, the system is characterized by the presence of both molecular and ionic species, resulting in three different types of interactions: ion–ion, molecule–molecule and ion–molecule.Ion–ion interactions are governed by electrostatic forces between ions that have a much longer range than other intermolecular forces. The long range interactions between ions are taken in account by the Pitzer term based on the Debye–Hückel theory.Molecule–molecule and ion–molecule interaction forces are known to be short-range in nature. To determine short range mean activity coefficients of salts in {water–electrolyte} binary mixtures, a chemical treatment of ions solvation is combined with the predictive power of the COSMO-RS model. The main originality of this work resides in this chemical treatment model that provides the thermodynamic relations which enable to determine the equilibrium properties of the real solution {water–salt}, knowing those of a hypothetical mixture containing water and hydrated clusters.The resulting model called “COSMO-RS-PDHS” predicts results that are in good agreement with experimental data.  相似文献   
100.
In living cells, compartmentalized or membrane‐associated enzymes are often assembled into large networks to cooperatively catalyze cascade reaction pathways essential for cellular metabolism. Here, we report the assembly of an artificial 2D enzyme network of two cascade enzymes—glucose‐6‐phosphate dehydrogenase (G6PDH) and lactate dehydrogenase (LDH)—on a wireframe DNA origami template. Swinging arms were used to facilitate the transport of the redox intermediate of NAD+/NADH between enzyme pairs on the array. The assemblies of 2D enzyme networks were characterized by gel electrophoresis and visualized by atomic force microscopy (AFM). The spatial arrangements of multiple enzyme pairs were optimized to facilitate efficient substrate channeling by exploiting the programmability of DNA origami to manipulate the key parameters of swinging arm length and stoichiometry. Compared with a single enzyme pair, the 2D organized enzyme systems exhibited higher reaction efficiency due to the promoted transfer of intermediates within the network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号