首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   91篇
  国内免费   28篇
电工技术   15篇
综合类   30篇
化学工业   12篇
金属工艺   23篇
机械仪表   42篇
建筑科学   6篇
矿业工程   3篇
能源动力   3篇
轻工业   5篇
武器工业   2篇
无线电   109篇
一般工业技术   101篇
自动化技术   720篇
  2024年   5篇
  2023年   43篇
  2022年   17篇
  2021年   49篇
  2020年   83篇
  2019年   86篇
  2018年   55篇
  2017年   43篇
  2016年   38篇
  2015年   30篇
  2014年   55篇
  2013年   68篇
  2012年   17篇
  2011年   32篇
  2010年   20篇
  2009年   25篇
  2008年   29篇
  2007年   37篇
  2006年   39篇
  2005年   29篇
  2004年   30篇
  2003年   28篇
  2002年   27篇
  2001年   25篇
  2000年   25篇
  1999年   11篇
  1998年   20篇
  1997年   31篇
  1996年   11篇
  1995年   9篇
  1994年   14篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   8篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
排序方式: 共有1071条查询结果,搜索用时 15 毫秒
21.
机器人行为选择机制综述   总被引:3,自引:1,他引:2  
详细综述了现有的机器人行为选择方法及国内外研究现状,并讨论了行为选择机制研究发展的趋势, 特别对受生物启发的机器人行为选择机制作了重点介绍.文章最后分析了机器人行为选择研究存在的问题并对以后 的研究方向作了展望.  相似文献   
22.
Building brains for bodies   总被引:10,自引:2,他引:8  
We describe a project to capitalize on newly available levels of computational resources in order to understand human cognition. We are building an integrated physical system including vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system will learn to think by building on its bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that in attempting to build such an integrated system we will have to fundamentally change the way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of intelligence. We expect to be able to better reconcile the theories that will be developed with current work in neuroscience.  相似文献   
23.
Flexible sensing technologies that play a pivotal role in endowing robots with detection capabilities and monitoring their motions are impulsively desired for intelligent robotics systems. However, integrating and constructing reliable and sustainable flexible sensors with multifunctionality for robots remains an everlasting challenge. Herein, an entirely intrinsic self-healing, stretchable, and attachable multimodal sensor is developed that can be conformally integrated with soft robots to identify diverse signals. The dynamic bonds cross-linked networks including the insulating polymer and conductive hydrogel with good comprehensive performances are designed to fabricate the sensor with prolonged lifespan and improved reliability. Benefiting from the self-adhesiveness of the hydrogel, strong interfacial bonding can be formed on various surfaces, which promotes the conformable integration of the sensor with robots. Due to the ionic transportation mechanism, the sensor can detect strain and temperature based on piezoresistive and thermoresistive effect, respectively. Moreover, the sensor can work in triboelectric mode to achieve self-powered sensing. Various information can be identified from the electrical signals generated by the sensor, including hand gestures, soft robot crawling motions, a message of code, the temperature of objects, and the type of materials, holding great promise in the fields of environmental detection, wearable devices, human-machine interfacing, and robotics.  相似文献   
24.
Drawing inspiration from the jumping motions of living creatures in nature, jumping robots have emerged as a promising research field over the past few decades due to great application potential in interstellar exploration, military reconnaissance, and life rescue missions. Early reviews mainly focused on jumping robots made of lightweight and rigid materials with mechanical components, concentrating on jumping control and stability. Herein, attention is paid to the jumping mechanisms of soft actuators assembled from various soft smarting materials and powered by different stimulus sources. The challenges and prospects of soft jumping actuators are also discussed. It is hoped that this review will contribute to the further development of soft jumping actuators and broaden their practical applications.  相似文献   
25.
Sophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface-functionalized MXene/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N-isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape-programmable somatosensory hydrogel actuators with rapid response, light-driven remote control, and self-sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof-of-concept illustration, structurally colored hydrogel actuators are applied for devising light-driven programmable shape-morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real-time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self-sensing and actuation capabilities, and pave an avenue for the development of soft-matter-based self-regulatory intelligence via built-in feedback control that is of paramount significance for intelligent soft robotics and automated machines.  相似文献   
26.
Citrus harvesting is a labor-intensive and time-intensive task. As the global population continues to age, labor costs are increasing dramatically. Therefore, the citrus-harvesting robot has attracted considerable attention from the business and academic communities. However, robotic harvesting in unstructured and natural citrus orchards remains a challenge. This study aims to address some challenges faced in commercializing citrus-harvesting robots. We present a fully integrated, autonomous, and innovative solution for citrus-harvesting robots to overcome the harvesting difficulties derived from the natural growth characteristics of citrus. This solution uses a fused simultaneous localization and mapping algorithm based on multiple sensors to perform high-precision localization and navigation for the robot in the field orchard. Besides, a novel visual method for estimating fruit poses is proposed to cope with the randomization of citrus growth orientations. Further, a new end-effector is designed to improve the success and conformity rate of citrus stem cutting. Finally, a fully autonomous harvesting robot system has been developed and integrated. Field evaluations showed that the robot could harvest citrus continuously with an overall success rate of 87.2% and an average picking time of 10.9 s/fruit. These efforts provide a solid foundation for the future commercialization of citrus-harvesting robots.  相似文献   
27.
Inspired by the Witkowski’s algorithm, we introduce a novel path planning and replanning algorithm — the two-way D (TWD) algorithm — based on a two-dimensional occupancy grid map of the environment. Unlike the Witkowski’s algorithm, which finds optimal paths only in binary occupancy grid maps, the TWD algorithm can find optimal paths in weighted occupancy grid maps. The optimal path found by the TWD algorithm is the shortest possible path for a given occupancy grid map of the environment. This path is more natural than the path found by the standard D algorithm as it consists of straight line segments with continuous headings. The TWD algorithm is tested and compared to the D and Witkowski’s algorithms by extensive simulations and experimentally on a Pioneer 3DX mobile robot equipped with a laser range finder.  相似文献   
28.
A buoyancy engine with a swashplate-type axial piston pump was developed. Its oil extrusion and drawing properties under high hydraulic pressure were evaluated. This buoyancy engine is now installed in an underwater glider that will achieve long-term monitoring of ocean environments up to 2100 m depth in a designated area with lower operational costs. This bidirectionally functioning pump can control the amount of oil in extrusion and draw operations. When drawing oil under high pressure, the hydraulic pump and the electric motor, respectively, act as a hydraulic motor and an electric generator. The generated electric power is absorbed by a damping resistor. The oil-drawing and extrusion properties were measured using a large hyperbaric chamber that is able to produce an almost identical environment to that of actual operations. Results confirmed stable oil extrusion operations up to 21 MPa. Regarding oil-drawing properties, although it was measured only up to 10 MPa in the hyperbaric chamber, it can be inferred that the system can draw the oil and can control the buoyancy precisely up to 21 MPa by replacing the two-way ball valve with an electromagnetic latching solenoid valve.  相似文献   
29.
Generating sequences of actions–plans–for robots using Automated Planning in stochastic and dynamic environments has been shown to be a difficult task with high computational complexity. These plans are composed of actions whose execution might fail due to different reasons. In many cases, if the execution of an action fails, it prevents the execution of some (or all) of the remainder actions in the plan. Therefore, in most real-world scenarios computing a complete and sound (valid) plan at each (re-)planning step is not worth the computational resources and time required to generate the plan. This is specially true given the high probability of plan execution failure. Besides, in many real-world environments, plans must be generated fast, both at the start of the execution and after every execution failure. In this paper, we present Variable Resolution Planning which uses Automated Planning to quickly compute a reasonable (not necessarily sound) plan. Our approach computes an abstract representation–removing some information from the planning task–which is used once a search depth of k steps has been reached. Thus, our approach generates a plan where the first k actions are applicable if the domain is stationary and deterministic, while the rest of the plan might not be necessarily applicable. The advantages of this approach are that it: is faster than regular full-fledged planning (both in the probabilistic or deterministic settings); does not spend much time on the far future actions that probably will not be executed, since in most cases it will need to replan before executing the end of the plan; and takes into account some information of the far future, as an improvement over pure reactive systems. We present experimental results on different robotics domains that simulate tasks on stochastic environments.  相似文献   
30.
This paper proposes a model-free learning scheme for the developmental acquisition of robot kinematic control and dexterous manipulation skills. The approach is based on a nested-hierarchical multi-agent architecture that intuitively encapsulates the topology of robot kinematic chains, where the activity of each independent degree-of-freedom (DOF) is finally mapped onto a distinct agent. Each one of those agents progressively evolves a local kinematic control strategy in a game-theoretic sense, that is, based on a partial (local) view of the whole system topology, which is incrementally updated through a recursive communication process according to the nested-hierarchical topology. Learning is thus approached not through demonstration and training but through an autonomous self-exploration process. A fuzzy reinforcement learning scheme is employed within each agent to enable efficient exploration in a continuous state–action domain. This paper constitutes in fact a proof of concept, demonstrating that global dexterous manipulation skills can indeed evolve through such a distributed iterative learning of local agent sensorimotor mappings. The main motivation behind the development of such an incremental multi-agent topology is to enhance system modularity, to facilitate extensibility to more complex problem domains and to improve robustness with respect to structural variations including unpredictable internal failures. These attributes of the proposed system are assessed in this paper through numerical experiments in different robot manipulation task scenarios, involving both single and multi-robot kinematic chains. The generalisation capacity of the learning scheme is experimentally assessed and robustness properties of the multi-agent system are also evaluated with respect to unpredictable variations in the kinematic topology. Furthermore, these numerical experiments demonstrate the scalability properties of the proposed nested-hierarchical architecture, where new agents can be recursively added in the hierarchy to encapsulate individual active DOFs. The results presented in this paper demonstrate the feasibility of such a distributed multi-agent control framework, showing that the solutions which emerge are plausible and near-optimal. Numerical efficiency and computational cost issues are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号