首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14144篇
  免费   1342篇
  国内免费   436篇
电工技术   174篇
综合类   795篇
化学工业   7262篇
金属工艺   529篇
机械仪表   138篇
建筑科学   214篇
矿业工程   433篇
能源动力   167篇
轻工业   2813篇
水利工程   35篇
石油天然气   758篇
武器工业   21篇
无线电   320篇
一般工业技术   1272篇
冶金工业   626篇
原子能技术   301篇
自动化技术   64篇
  2024年   93篇
  2023年   202篇
  2022年   360篇
  2021年   422篇
  2020年   492篇
  2019年   423篇
  2018年   395篇
  2017年   479篇
  2016年   528篇
  2015年   481篇
  2014年   724篇
  2013年   946篇
  2012年   1041篇
  2011年   990篇
  2010年   675篇
  2009年   688篇
  2008年   577篇
  2007年   802篇
  2006年   790篇
  2005年   687篇
  2004年   602篇
  2003年   491篇
  2002年   475篇
  2001年   407篇
  2000年   356篇
  1999年   315篇
  1998年   238篇
  1997年   196篇
  1996年   158篇
  1995年   127篇
  1994年   119篇
  1993年   106篇
  1992年   84篇
  1991年   70篇
  1990年   58篇
  1989年   46篇
  1988年   33篇
  1987年   30篇
  1986年   21篇
  1985年   38篇
  1984年   34篇
  1983年   14篇
  1982年   30篇
  1981年   14篇
  1980年   20篇
  1979年   15篇
  1978年   6篇
  1977年   9篇
  1976年   4篇
  1959年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Dual‐ion batteries (DIBs) have attracted much attention due to their advantages of low cost and especially environmental friendliness. However, the capacities of most DIBs are still unsatisfied (≈100 mAh g?1) ascribed to the limited capacity of anions intercalation for conventional graphite cathode. In this study, 3D porous microcrystalline carbon (3D‐PMC) was designed and synthesized via a self‐templated growth approach, and when used as cathode for a DIB, it allows both intercalation and adsorption of anions. The microcrystalline carbon is beneficial to obtain capacity originated from anions intercalation, and the 3D porous structure with a certain surface area contributes to anions adsorption capacity. With the synergistic effect, this 3D‐PMC is utilized as cathode and tin as anode for a sodium‐based DIB, which has a high capacity of 168.0 mAh g?1 at 0.3 A g?1, among the best values of reported DIBs so far. This cell also exhibits long‐term cycling stability with a capacity retention of ≈70% after 2000 cycles at a high current rate of 1 A g?1. It is believed that this work will provide a strategy to develop high‐performance cathode materials for DIBs.  相似文献   
72.
Na‐ion hybrid capacitors consisting of battery‐type anodes and capacitor‐style cathodes are attracting increasing attention on account of the abundance of sodium‐based resources as well as the potential to bridge the gap between batteries (high energy) and supercapacitors (high power). Herein, hierarchically structured carbon materials inspired by multiscale building units of cellulose from nature are assembled with cellulose‐based gel electrolytes into Na‐ion capacitors. Nonporous hard carbon anodes are obtained through the direct thermal pyrolysis of cellulose nanocrystals. Nitrogen‐doped carbon cathodes with a coral‐like hierarchically porous architecture are prepared via hydrothermal carbonization and activation of cellulose microfibrils. The reversible charge capacity of the anode is 256.9 mAh g?1 when operating at 0.1 A g?1 from 0 to 1.5 V versus Na+/Na, and the discharge capacitance of cathodes tested within 1.5 to 4.2 V versus Na+/Na is 212.4 F g?1 at 0.1 A g?1. Utilizing Na+ and ClO4? as charge carriers, the energy density of the full Na‐ion capacitor with two asymmetric carbon electrodes can reach 181 Wh kg?1 at 250 W kg?1, which is one of the highest energy devices reported until now. Combined with macrocellulose‐based gel electrolytes, all‐cellulose‐based quasi‐solid‐state devices are demonstrated possessing additional advantages in terms of overall sustainability.  相似文献   
73.
Sodium‐ion batteries are attracting increasing interests as a promising alternative to lithium‐ion batteries due to the abundant resource and low cost of sodium. Despite phosphorus (P) has extremely high theoretical capacity of 2595 mAh g?1, its wide application for sodium‐ion battery is highly hampered by its fast capacity fading and low Coulombic efficiency as a result of large volume change upon cycling. Herein, a robust phosphorus anode with long cycle life for sodium‐ion battery via hybridization with functional conductive polymer is presented. To this end, the polyacrylonitrile is first dehydrogenated by sulfur via a facile thermal treatment, forming a conductive main chain embedded with C–S–S moieties. This functional conductive polymer enables the formation of P? S bonds between phosphorus and functional conductive matrix, leading to a robust electrode that can accommodate the large volume change upon substantial volume change in cycling. Consequently, this hybrid anode delivers a high capacity of ≈1300 mAh g?1 at a current density of 520 mA g?1 with high Coulombic efficiency (>99%) and good cycling performance (91% capacity retention after 100 cycles).  相似文献   
74.
Inorganic/organic composite polymer electrolytes (CPEs) with good flexibility and electrode contact have been pursued for solid−state sodium-metal batteries. However, the application of CPEs for high energy density solid−state sodium-metal batteries is still limited by the low Na+ conductivity, large thickness, and low ion transference number. Herein, an ultra-thin single-particle-layer (UTSPL) composite polymer electrolyte membrane with a thickness of ≈20 µm straddled by a sodium beta−alumina ceramic electrolyte (SBACE) is presented. A ceramic Na+-ion electrolyte that bridges or percolates across an ultra-thin and flexible polymer membrane provides: 1) the strength and flexibility from the polymer membrane, 2) excellent electrolyte/electrode interfacial contact, and 3) a percolation path for Na+-ion transfer. Owing to this novel design, the obtained UTSPL-35SBACE membrane exhibits a high Na+-ion conductivity of 0.19 mS cm−1 and a transference number of 0.91 at room temperature, contributing to long−term cycling stability of symmetric sodium cells with a small overpotential. The assembled quasi-solid-state cell with the as−prepared UTSPL-35SBACE membrane displays superior cycling performance with a discharge capacity of 105 mAh g−1 at 0.5 °C rate after 100 cycles and excellent rate performance (82 mAh g−1 at 5 °C rate) at room temperature with the potassium manganese hexacyanoferrate (KMHCF)@CNTs/CNFs cathode, where KMHCF refers to potassium manganese hexacyanoferrate.  相似文献   
75.
Oxygen-redox-based-layered cathode materials are of great importance in realizing high-energy-density sodium-ion batteries (SIBs) that can satisfy the demands of next-generation energy storage technologies. However, Mn-based-layered materials (P2-type Na-poor Nay[AxMn1−x]O2, where A = alkali ions) still suffer from poor reversibility during oxygen-redox reactions and low conductivity. In this work, the dual Li and Co replacement is investigated in P2-type-layered NaxMnO2. Experimentally and theoretically, it is demonstrated that the efficacy of the dual Li and Co replacement in Na0.6[Li0.15Co0.15Mn0.7]O2 is that it improves the structural and cycling stability despite the reversible Li migration from the transition metal layer during de-/sodiation. Operando X-ray diffraction and ex situ neutron diffraction analysis prove that the material maintains a P2-type structure during the entire range of Na+ extraction and insertion with a small volume change of ≈4.3%. In Na0.6[Li0.15Co0.15Mn0.7]O2, the reversible electrochemical activity of Co3+/Co4+, Mn3+/Mn4+, and O2-/(O2)n- redox is identified as a reliable mechanism for the remarkable stable electrochemical performance. From a broader perspective, this study highlights a possible design roadmap for developing cathode materials with optimized cationic and anionic activities and excellent structural stabilities for SIBs.  相似文献   
76.
Alloying-type metal sulfides with high theoretical capacities are promising anodes for sodium-ion batteries, but suffer from sluggish sodiation kinetics and huge volume expansion. Introducing intercalative motifs into alloying-type metal sulfides is an efficient strategy to solve the above issues. Herein, robust intercalative In S motifs are grafted to high-capacity layered Bi2S3 to form a cation-disordered (BiIn)2S3, synergistically realizing high-rate and large-capacity sodium storage. The In S motif with strong bonding serves as a space-confinement unit to buffer the volume expansion, maintaining superior structural stability. Moreover, the grafted high-metallicity Indium increases the bonding covalency of Bi S, realizing controllable reconstruction of Bi S bond during cycling to effectively prevent the migration and aggregation of atomic Bi. The novel (BiIn)2S3 anode delivers a high capacity of 537 mAh g−1 at 0.4 C and a superior high-rate stability of 247 mAh g−1 at 40 C over 10000 cycles. Further in situ and ex situ characterizations reveal the in-depth reaction mechanism and the breakage and formation of reversible Bi S bonds. The proposed space confinement and bonding covalency enhancement strategy via grafting intercalative motifs can be conducive to developing novel high-rate and large-capacity anodes.  相似文献   
77.
以SnCl4?5H2O和SbCl3乙醇溶液为原料,用阴离子树脂交换除氯水解法制得无Cl–的掺锑氢氧化锡胶体沉淀。并用乙酸异戊酯作脱水剂。结果表明,用乙酸异戊酯共沸蒸馏干燥法能有效防止粉体的硬团聚,得到了比表面积为284.43m2/g掺锑氢氧化锡微粉。热处理后得到了低硬团聚、电阻率为0.405?·cm的掺锑氧化锡纳米晶体。  相似文献   
78.
NBT-KBT-NN无铅压电陶瓷性能研究   总被引:2,自引:0,他引:2  
采用传统陶瓷的制备方法,制备出(1-x)Na0.44K0.06Bi0.5TiO3-xNaNbO3(x=0~0.10)的无铅压电陶瓷。X-射线衍射(XRD)分析表明,所研究的组成均形成纯钙钛矿(ABO3)型固溶体,其晶体结构则随NaNbO3含量的增加由三方转变为假立方结构,并最终转变为立方结构。陶瓷材料的介电常数-温度曲线显示该体系材料为弛豫型铁电体,随着NaNbO3的增加,材料的弛豫性增强;采用改进的居里-外斯定理可较好地描述材料的介电常数-温度关系。测试了不同组成陶瓷的压电性能,当NaNbO5含量为0.08 mol时,陶瓷的压电常数d33和平面机电耦合系数kp比基础组成略有下降,但其介电常数3Tε3/0ε和介质损耗tanδ则有较大程度的增加。  相似文献   
79.
All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3?yPS4?xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x = 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm?1 at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4 (t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3 with a reversible capacity of ≈100 mAh g‐1 at room temperature.  相似文献   
80.
The dramatically increasing demand of high‐energy lithium‐ion batteries (LIBs) urgently requires advanced substitution for graphite‐based anodes. Herein, inspired from the extra capacity of lithium storage in solid‐electrolyte interface (SEI) films, layered hydroxide cobalt acetates (LHCA, Co(Ac)0.48(OH)1.52·0.55H2O) are introduced as novel and high‐efficiency anode materials. Furthermore, ultrathin LHCA nanoplates are face‐to‐face anchored on the surface of graphene nanosheets (GNS) through a facile solvothermal method to improve the electronic transport and avoid agglomeration during repeated cycles. Profiting from the parallel structure, LHCA//GNS nanosheets exhibit extraordinary long‐term and high‐rate performance. At the current densities of 1000 and 4000 mA g?1, the reversible capacities maintain ≈1050 mAh g?1 after 200 cycles and ≈780 mAh g?1 after 300 cycles, respectively, much higher than the theoretical value of LHCA according to the conversion mechanism. Fourier transform infrared spectroscopy confirms the conversion from acetate to acetaldehyde after lithiation. A reasonable mechanism is proposed to elucidate the lithium storage behaviors referring to the electrocatalytic conversion of OH groups with Co nanocatalysts. This work can help further understand the contribution of SEI components (especially LiOH and LiAc) to lithium storage. It is envisaged that layered transition metal hydroxides can be used as advanced materials for energy storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号