首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54888篇
  免费   5290篇
  国内免费   2355篇
电工技术   2524篇
技术理论   2篇
综合类   2899篇
化学工业   11946篇
金属工艺   7290篇
机械仪表   2926篇
建筑科学   2310篇
矿业工程   1459篇
能源动力   8525篇
轻工业   3425篇
水利工程   476篇
石油天然气   1484篇
武器工业   448篇
无线电   4180篇
一般工业技术   6668篇
冶金工业   3072篇
原子能技术   496篇
自动化技术   2403篇
  2024年   209篇
  2023年   998篇
  2022年   2179篇
  2021年   2887篇
  2020年   2204篇
  2019年   1848篇
  2018年   1602篇
  2017年   2087篇
  2016年   1960篇
  2015年   1957篇
  2014年   3161篇
  2013年   3286篇
  2012年   3802篇
  2011年   4671篇
  2010年   3388篇
  2009年   3224篇
  2008年   2943篇
  2007年   3235篇
  2006年   2964篇
  2005年   2389篇
  2004年   1976篇
  2003年   1735篇
  2002年   1567篇
  2001年   1261篇
  2000年   984篇
  1999年   764篇
  1998年   619篇
  1997年   495篇
  1996年   410篇
  1995年   316篇
  1994年   303篇
  1993年   220篇
  1992年   191篇
  1991年   137篇
  1990年   104篇
  1989年   111篇
  1988年   65篇
  1987年   34篇
  1986年   34篇
  1985年   40篇
  1984年   33篇
  1983年   20篇
  1982年   27篇
  1981年   20篇
  1980年   20篇
  1979年   11篇
  1976年   7篇
  1975年   8篇
  1974年   4篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
《Ceramics International》2021,47(19):27177-27187
BaZrO3-based materials doped with a trivalent cation have excellent chemical stability and relatively high proton conductivity which makes them potential proton conducting oxide materials for various electrochemical device applications such as hydrogen processing, high-temperature electrolysis, and solid electrolyte in fuel cells. However, BaZrO3 showed poor sinterability, requiring high sintering temperatures (1700–2100 °C) with longtime sintering (20–100 h) to achieve the desired microstructure and grain growth. This sintering problem can be solved by slightly doping BaZrO3 with a sintering aid element. Therefore, in this study, two different zirconate proton conductors: BaZr0·9Y0·1O3-α (BZY) and BaZr0·955Y0·03Co0·015O3-α (BZYC) were sintered in an air atmosphere and an oxygen atmosphere for 20 h in the temperature range of 1500–1640 °C. The sinterability was evaluated by analyzing the XRD diffraction patterns, lattice constant, lattice strain, crystallite size, relative density, open porosity, closed porosity, surface morphology, grain size, and grain boundary distribution, using the XRD, SEM, EDX, and Archimedes density measurement methods. It is concluded that in an oxygen atmosphere, sintering aid Co not only improves the relative density but also produces highly dense fine particles with clear grain boundaries which are promising for electrochemical hydrogen device applications.  相似文献   
72.
A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme’s independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.  相似文献   
73.
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.  相似文献   
74.
In this paper, cenosphere particles embedded in AA2014 aluminium matrix are used to fabricate syntactic foam by stir casting method. The particle size is about 100?µm and foam density is about 1990?kg?m?3. Compression tests at strain rate 0.001/s are performed on foam samples to characterise their mechanical properties which are then used in numerical analysis on commercial finite element analysis software ABAQUS/CAE with isotropic elastic-plastic material model. Experimental and numerical results show good conformity in deformation behaviour with elastic and plateau zones showing average deviations less than 5% and 20%, respectively. Foams showed high yield stress and energy absorption capabilities that can be useful in making blast and impact resistant structures.  相似文献   
75.
76.
Adipose-derived mesenchymal stromal cells (Ad-MSCs) are a promising tool for articular cartilage repair and regeneration. However, the terminal hypertrophic differentiation of Ad-MSC-derived cartilage is a critical barrier during hyaline cartilage regeneration. In this study, we investigated the role of matrilin-3 in preventing Ad-MSC-derived chondrocyte hypertrophy in vitro and in an osteoarthritis (OA) destabilization of the medial meniscus (DMM) model. Methacrylated hyaluron (MAHA) (1%) was used to encapsulate and make scaffolds containing Ad-MSCs and matrilin-3. Subsequently, the encapsulated cells in the scaffolds were differentiated in chondrogenic medium (TGF-β, 1–14 days) and thyroid hormone hypertrophic medium (T3, 15–28 days). The presence of matrilin-3 with Ad-MSCs in the MAHA scaffold significantly increased the chondrogenic marker and decreased the hypertrophy marker mRNA and protein expression. Furthermore, matrilin-3 significantly modified the expression of TGF-β2, BMP-2, and BMP-4. Next, we prepared the OA model and transplanted Ad-MSCs primed with matrilin-3, either as a single-cell suspension or in spheroid form. Safranin-O staining and the OA score suggested that the regenerated cartilage morphology in the matrilin-3-primed Ad-MSC spheroids was similar to the positive control. Furthermore, matrilin-3-primed Ad-MSC spheroids prevented subchondral bone sclerosis in the mouse model. Here, we show that matrilin-3 plays a major role in modulating Ad-MSCs’ therapeutic effect on cartilage regeneration and hypertrophy suppression.  相似文献   
77.
Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only solvent. Morphological characterizations demonstrate that the LSCF fibers have highly crystalline structure with uniform elemental distribution. After heat treatment, the average fiber diameter is 250 nm and the porosity of the nanofiber tissue is 37.5 %. The heat treated LSCF nanofibers are applied directly onto a Ce0.9Gd0.1O1.95 (CGO) electrolyte disk to form a symmetrical cell. Electrochemical characterization is carried out through electrochemical impedance spectroscopy (EIS) in the temperature range 550?°C–950?°C, and reproducibility of the electrochemical performance for a series of cells is demonstrated. At 650?°C, the average measured polarization resistance Rp is 1.0 Ω cm2. Measured performance decay is 1 % during the first 33?h of operation at 750?°C, followed by an additional 0.7 % over the subsequent 70?h.  相似文献   
78.
Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).  相似文献   
79.
《Ceramics International》2019,45(13):16405-16410
Copper Indium Gallium Selenide (Cu(In,Ga)Se2, CIGSe) absorbers with different Ga contents were prepared by sputtering CIGSe ceramic targets and post-annealing. CIGSe solar cell devices were fabricated with other functional layers. The device performances and absorber properties were investigated. Increasing Ga content led to an increase in VOC and a decrease in JSC. Ga was supposed to diffuse towards back contact during the annealing process. The best performance was obtained as the ratio of Ga/(In + Ga) reaches 0.32 with the efficiency of 13.8% and a VOC of 537 mV.  相似文献   
80.
Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号