首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   47篇
  国内免费   12篇
电工技术   1篇
综合类   1篇
化学工业   6篇
金属工艺   2篇
无线电   79篇
一般工业技术   121篇
冶金工业   1篇
原子能技术   1篇
  2023年   12篇
  2022年   2篇
  2021年   7篇
  2020年   17篇
  2019年   28篇
  2018年   11篇
  2017年   11篇
  2016年   14篇
  2015年   12篇
  2014年   18篇
  2013年   10篇
  2012年   15篇
  2011年   9篇
  2009年   1篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   9篇
  2004年   2篇
  2003年   16篇
  2002年   4篇
排序方式: 共有212条查询结果,搜索用时 15 毫秒
21.
Amorphous and polycrystalline Sn‐doped IrO2 thin films, Ir1‐xSnxO2, are grown for the first time. Their electrical response and strength of the spin–orbit coupling are studied in order to better understand and tailor its performance as spin current detector material. These experiments prove that the resistivity of IrO2 can be tuned over several orders of magnitude by controlling the doping content in both the amorphous and the polycrystalline state. In addition, growing amorphous samples increase the resistivity, thus improving the spin current to charge current conversion. As far as the spin–orbit coupling is concerned, the system not only remains in a strong spin–orbit coupling regime but it seems to undergo a slight enhancement in the amorphous state as well as in the Sn‐doped samples.  相似文献   
22.
Manipulating spins by ultrafast pulse laser provides a new avenue to switch the magnetization for spintronic applications. While the spin–orbit coupling is known to play a pivotal role in the ultrafast laser‐induced demagnetization, the effect of the anisotropic spin–orbit coupling on the transient magnetization remains an open issue. This study uncovers the role of anisotropic spin–orbit coupling in the spin dynamics in a half‐metallic La0.7Sr0.3MnO3 film by ultrafast pump–probe technique. The magnetic order is found to be transiently enhanced or attenuated within the initial sub‐picosecond when the probe light is tuned to be s‐ or p‐polarized, respectively. The subsequent slow demagnetization amplitude follows the fourfold symmetry of the d x 2 ? y 2 orbitals as a function of the polarization angles of the probe light. A model based on the Elliott–Yafet spin‐flip scatterings is proposed to reveal that the transient magnetization enhancement is related to the spin‐mixed states arising from the anisotropic spin–orbit coupling. The findings provide new insights into the spin dynamics in magnetic systems with anisotropic spin–orbit coupling as well as perspectives for the ultrafast control of information process in spintronic devices.  相似文献   
23.
Magnetic materials with a non‐collinear and non‐coplanar arrangement of magnetic moments hosting a nonzero scalar spin‐chirality exhibit unique magnetic and spin‐dependent electronic transport properties. The spin chirality often occurs in materials where competing exchange interactions lead to geometrical frustrations between magnetic moments and to a strong coupling between the crystal lattice and the magnetic structure. These characteristics are particularly strong in Mn‐based antiperovskites where the interactions and chirality can be tuned by substitutional modifications of the crystalline lattice. This study presents evidence for the formation of two unequal chiral spin states in magnetically ordered Mn3.338Ni0.651N antiperovskite based on density functional theory calculations and supported by magnetization measurements after cooling in a magnetic field. The existence of two scalar spin‐chiralities of opposite sign and different magnitude is demonstrated by a vertical shift of the magnetic‐field dependent magnetization and Hall effect at low fields and from an asymmetrical magnetoresistivity when the applied magnetic field is oriented parallel or antiparallel to the direction of the cooling field. This opens up the possibility of manipulating the spin chirality for potential use in the emerging field of chiral spintronics.  相似文献   
24.
二维体系中的长程铁磁序现象再次打破了Mermin-Wagner理论.铁磁二维材料的铁磁性与层层堆叠的顺序、结构、层间距息息相关.目前对铁磁二维材料CrI3在低温下的堆叠顺序和结构仍不确定,且未见报道.针对该科学问题,本工作深入研究了2–5层及块体CrI3的拉曼特征,详细研究了拉曼特征峰与层数、偏振、旋光和温度之间的依赖关系;揭示了2–5层及块体CrI3在低温下(10 K)为菱方堆叠结构,解决了领域内关于CrI3低温结构的争议,填补了该领域的研究空白,并发现了自旋声子耦合现象.本工作开创了独特的磁光电原位传输测量系统,从样品制备到表征完全与空气隔绝,避免样品污染和损坏,因此,本工作更准确地表征出了CrI3最本征的结构特性.  相似文献   
25.
Antiferromagnetic spin dynamics is important for both fundamental and applied antiferromagnetic spintronic devices; however, it is rarely explored by external fields because of the strong exchange interaction in antiferromagnetic materials. Here, the photoinduced excitation of ultrafast antiferromagnetic spin dynamics is achieved by capping antiferromagnetic RFeO3 (R = Er or Dy) with an exchange‐coupled ferromagnetic Fe film. Compared with antiferromagnetic spin dynamics of bare RFeO3 orthoferrite single crystals, which can be triggered effectively by ultrafast laser heating just below the phase transition temperature, the ultrafast photoinduced multimode antiferromagnetic spin dynamic modes, for exchange‐coupled Fe/RFeO3 heterostructures, including quasiferromagnetic resonance, impurity, coherent phonon, and quasiantiferromagnetic modes, are observed in a temperature range of 10–300 K. These experimental results not only offer an effective means to trigger ultrafast antiferromagnetic spin dynamics of rare‐earth orthoferrites, but also shed light on the ultrafast manipulation of antiferromagnetic magnetization in Fe/RFeO3 heterostructures.  相似文献   
26.
The coupling of diverse degrees of freedom opens the door to physical effects that go beyond each of them individually, making multifunctionality a much sought-after attribute for high-performance devices. Here, the multifunctional operation of a single-layer p-type organic device, displaying both spin transport and photovoltaic effect at the room temperature on a transparent substrate, is shown. The generated photovoltage is almost three times larger than the applied bias to the device which facilitates the modulation of the magnetic response of the device with both bias and light. The device shows an increase in power conversion efficiency under magnetic field, an ability to invert the current with magnetic field and under certain conditions it can act as a spin photodetector with zero power consumption in the standby mode. The room-temperature exploitation of the interplay among light, bias, and magnetic field in the single device with a p-type molecule opens a way toward the development of efficient high-performance spin photovoltaic cells.  相似文献   
27.
Engineering of magnetic materials for developing better spintronic applications relies on the control of two key parameters: the spin polarization and the Gilbert damping, responsible for the spin angular momentum dissipation. Both of them are expected to affect the ultrafast magnetization dynamics occurring on the femtosecond timescale. Here, engineered Co2MnAlxSi1-x Heusler compounds are used to adjust the degree of spin polarization at the Fermi energy, P, from 60% to 100% and to investigate how they correlate with the damping. It is experimentally demonstrated that the damping decreases when increasing the spin polarization from 1.1 × 10−3 for Co2MnAl with 63% spin polarization to an ultralow value of 4.6 × 10−4 for the half-metallic ferromagnet Co2MnSi. This allows the investigation of the relation between these two parameters and the ultrafast demagnetization time characterizing the loss of magnetization occurring after femtosecond laser pulse excitation. The demagnetization time is observed to be inversely proportional to 1 – P and, as a consequence, to the magnetic damping, which can be attributed to the similarity of the spin angular momentum dissipation processes responsible for these two effects. Altogether, the high-quality Heusler compounds allow control over the band structure and therefore the channel for spin angular momentum dissipation.  相似文献   
28.
Magnetic crystals formed by 2D layers interacting by weak van der Waals forces are currently a hot research topic. When these crystals are thinned to nanometric size, they can manifest strikingly different magnetic behavior compared to the bulk form. This can be the result of, for example, quantum electronic confinement effects, the presence of defects, or pinning of the crystallographic structure in metastable phases induced by the exfoliation process. In this work, an investigation of the magnetism of micromechanically cleaved CrCl3 flakes with thickness >10 nm is performed. These flakes are characterized by superconducting quantum interference device magnetometry, surface-sensitive X-ray magnetic circular dichroism, and spatially resolved magnetic force microscopy. The results highlight an enhancement of the CrCl3 antiferromagnetic interlayer interaction that appears to be independent of the flake size when the thickness is tens of nanometers. The estimated exchange field is 9 kOe, representing an increase of ≈900% compared to the one of the bulk crystals. This effect can be attributed to the pinning of the high-temperature monoclinic structure, as recently suggested by polarized Raman spectroscopy investigations in thin (8–35 nm) CrCl3 flakes.  相似文献   
29.
The ability to switch magnetic elements by spin-orbit-induced torques has recently attracted much attention for a path toward high-performance, nonvolatile memories with low power consumption. Realizing efficient spin-orbit-based switching requires the harnessing of both new materials and novel physics to obtain high charge-to-spin conversion efficiencies, thus making the choice of spin source crucial. Here, the observation of spin-orbit torque switching in bilayers consisting of a semimetallic film of 1T′-MoTe2 adjacent to permalloy is reported. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best-performing heavy metals. The thickness-dependence can be understood if the interfacial spin-orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell-shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low-power semimetal-material-based spin devices.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号