首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3084篇
  免费   423篇
  国内免费   132篇
电工技术   32篇
综合类   147篇
化学工业   1076篇
金属工艺   70篇
机械仪表   216篇
建筑科学   40篇
矿业工程   2篇
能源动力   13篇
轻工业   642篇
水利工程   1篇
石油天然气   6篇
武器工业   1篇
无线电   425篇
一般工业技术   754篇
冶金工业   19篇
原子能技术   43篇
自动化技术   152篇
  2024年   20篇
  2023年   83篇
  2022年   233篇
  2021年   365篇
  2020年   187篇
  2019年   170篇
  2018年   130篇
  2017年   138篇
  2016年   134篇
  2015年   167篇
  2014年   169篇
  2013年   268篇
  2012年   201篇
  2011年   167篇
  2010年   138篇
  2009年   132篇
  2008年   95篇
  2007年   129篇
  2006年   103篇
  2005年   99篇
  2004年   90篇
  2003年   63篇
  2002年   59篇
  2001年   45篇
  2000年   44篇
  1999年   19篇
  1998年   20篇
  1997年   21篇
  1996年   19篇
  1995年   17篇
  1994年   14篇
  1993年   18篇
  1992年   13篇
  1991年   7篇
  1990年   6篇
  1989年   13篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1979年   1篇
  1957年   1篇
排序方式: 共有3639条查询结果,搜索用时 31 毫秒
31.
32.
Regular physical activity in cyclic sports can influence the so-called “angiogenic switch”, which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the “angiogenic switch” problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the “angiogenic switch” is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the “angiogenic switch” as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.  相似文献   
33.
Poly(2-hydroxyethyl methacrylate) (pHEMA) as a biomaterial with excellent biocompatibility and cytocompatibility elicits a minimal immunological response from host tissue making it desirable for different biomedical applications. This article seeks to provide an in-depth overview of the properties and biomedical applications of pHEMA for bone tissue regeneration, wound healing, cancer therapy (stimuli and non-stimuli responsive systems), and ophthalmic applications (contact lenses and ocular drug delivery). As this polymer has been widely applied in ophthalmic applications, a specific consideration has been devoted to this field. Pure pHEMA does not possess antimicrobial properties and the site where the biomedical device is employed may be susceptible to microbial infections. Therefore, antimicrobial strategies such as the use of silver nanoparticles, antibiotics, and antimicrobial agents can be utilized to protect against infections. Therefore, the antimicrobial strategies besides the drug delivery applications of pHEMA were covered. With continuous research and advancement in science and technology, the outlook of pHEMA is promising as it will most certainly be utilized in more biomedical applications in the near future. The aim of this review was to bring together state-of-the-art research on pHEMA and their applications.  相似文献   
34.
Bone exhibits piezoelectric properties. Thus, electrical stimulations such as pulsed electromagnetic fields (PEMFs) and stimuli-responsive piezoelectric properties of scaffolds have been investigated separately to evaluate their efficacy in supporting osteogenesis. However, current understanding of cells responding under the combined influence of PEMF and piezoelectric properties in scaffolds is still lacking. Therefore, in this study, we fabricated piezoelectric scaffolds by functionalization of polycaprolactone-tricalcium phosphate (PCL-TCP) films with a polyvinylidene fluoride (PVDF) coating that is self-polarized by a modified breath-figure technique. The osteoinductive properties of these PVDF-coated PCL-TCP films on MC3T3-E1 cells were studied under the stimulation of PEMF. Piezoelectric and ferroelectric characterization demonstrated that scaffolds with piezoelectric coefficient d33 = −1.2 pC/N were obtained at a powder dissolution temperature of 100 °C and coating relative humidity (RH) of 56%. DNA quantification showed that cell proliferation was significantly enhanced by PEMF as low as 0.6 mT and 50 Hz. Hydroxyapatite staining showed that cell mineralization was significantly enhanced by incorporation of PVDF coating. Gene expression study showed that the combination of PEMF and PVDF coating promoted late osteogenic gene expression marker most significantly. Collectively, our results suggest that the synergistic effects of PEMF and piezoelectric scaffolds on osteogenesis provide a promising alternative strategy for electrically augmented osteoinduction. The piezoelectric response of PVDF by PEMF, which could provide mechanical strain, is particularly interesting as it could deliver local mechanical stimulation to osteogenic cells using PEMF.  相似文献   
35.
作为一种新型的微纳制造技术,熔体直写电纺被广泛用于组织工程支架的可控制备,有序的纤维沉积是该领域应用的前提条件。对于支架成型精度的探究,本文使用生物可降解材料聚己内酯(PCL),采用自行设计的熔体电纺三维可控成型设备进行实验,考察了纤维间距对二维并行纤维沉积形貌及成型精度的影响,以及纺丝电压和网格大小对三维网格结构形貌及精度影响。结果表明,随着并行纤维设定距离的增大,纤维的沉积误差减小,并最终趋于平稳。对于三维网格结构,随电压的增加,最大沉积层数量先增大后减小,当纺丝电压为6kV时达到最大沉积层数15层。成型精度误差先减小后增大,当纺丝电压为7kV时,精度最高误差小于5%。随设定网格边长的增大,沉积层数不断增大。成型精度逐渐提高,当网格边长大于等于1.5mm时,沉积误差趋于稳定,并维持在5%左右。  相似文献   
36.
Biomimetic strain hardening in interpenetrating polymer network hydrogels   总被引:1,自引:0,他引:1  
In this paper, we present the systematic development of mechanically enhanced interpenetrating polymer network (IPN) hydrogels with Young's moduli rivaling those of natural load-bearing tissues. The IPNs were formed by synthesis of a crosslinked poly(acrylic acid) (PAA) network within an end-linked poly(ethylene glycol) (PEG) macromonomer network. The strain-hardening behavior of these PEG/PAA IPNs was studied through uniaxial tensile testing and swelling measurements. The interaction between the independently crosslinked networks within the IPN was varied by (1) changing the molecular weight of the PEG macromonomer, (2) controlling the degree of PAA ionization by changing pH, and (3) increasing the polymer content in the PAA network. Young's moduli and the maximum stress-at-break of the swollen hydrogels were normalized on the basis of their polymer content. Strain hardening in the IPNs exhibited a strong dependence on the molecular weight of the first network macromonomer, the pH of the swelling buffer, as well as the polymer content of the second network. The results indicate that the mechanical enhancement of these IPNs is mediated by the strain-induced intensity of physical entanglements between the two networks. The strain can be applied either by mechanical deformation or by changing the pH to modulate the swelling of the PAA network. At pHs below the pKa of PAA (4.7), entanglements between PEG and PAA are reinforced by interpolymer hydrogen bonds, yielding IPNs with high fracture strength. At pHs above 4.7, a “pre-stressed” IPN with dramatically enhanced modulus is formed due to ionization-induced swelling of the PAA network within a static PEG network. The modulus enhancement ranged from two-fold to over 10-fold depending on the synthesis conditions used. Variation of the network parameters and swelling conditions enabled “tuning” of the hydrogels' physical properties, yielding materials with water content between 58% and 90% water, tensile strength between 2.0 MPa and 12.0 MPa, and initial Young's modulus between 1.0 MPa and 19.0 MPa. Under physiologic pH and salt concentration, these materials attain “biomimetic” values for initial Young's modulus in addition to high tensile strength and water content. As such, they are promising new candidates for artificial replacement of natural tissues such as the cornea, cartilage, and other load-bearing structures.  相似文献   
37.
The interactions between tPA domains that are important forcatalysis are poorly understood. We have probed the functionof interdomain interactions by generating tPA variants in whichdomains are duplicated or rearranged. The proteins were expressedin a transient mammalian expression system and tested in vitrofor their ability to activate plasminogen, induce fibrinolysisand bind to a forming fibrin clot. Duplication of the heavychain domains of tPA produced enzymatically active tPA variants,many of which demonstrated similar in vitro amidolytic and fibrinolyticactivity and similar fibrin affinity to the parent molecule.Zymographic analysis of the domain duplication tPA variantsshowed one major active species for each variant. Selectionof the residues duplicated and the interdomain spacing werefound to be critical considerations in the design of tPA variantswith duplicated domains. We also rearranged the domains of tPAsuch that kringle 1 replaced the second kringle domain and viceversa. An analysis of these variants indicates that the firstkringle domain can confer fibrin affinity to a tPA variant andfunction in place of kringle 2. Therefore, in wild-type tPA,the functions of kringle 1 and kringle 2 must be dependent partiallyon their orientation within the heavy chain of the protein.The functional autonomy of the heavy and light chains of tPAis demonstrated by the activity of a tPA variant in which theorder of the heavy and light chains was reversed.  相似文献   
38.
目的探讨弓形虫复合黏膜疫苗滴鼻免疫小鼠的黏膜相关淋巴细胞及其亚群的动态变化。方法取BALB/c小鼠96只,随机分为实验组和对照组,实验组以弓形虫复合黏膜疫苗20μl/只滴鼻免疫,对照组以PBS滴鼻。滴鼻2次(间隔2周)后,分别于第1、2、3、4、6、8、10、12周处死小鼠,分离鼻相关淋巴组织(NALT)、Peyer结(PP)和上皮内淋巴细胞(IEL),制备淋巴细胞悬液,计数并涂片。免疫细胞化学法检测CD4+、CD8+T细胞亚群水平。结果实验组NALT、PP和IEL的T淋巴细胞均显著增生,PP和IEL的T淋巴细胞第2周达高峰,之后逐渐降低。与对照组相比,NALT的T淋巴细胞于第1、2、6、8、12周显著增生,PP的T淋巴细胞数于第1、2、3周显著增生,IEL于第1~4周显著增生。NALT和PP中主要以CD4+T细胞增生为主,肠IEL以CD8+T细胞增生为主。结论弓形虫复合黏膜疫苗滴鼻免疫BALB/c小鼠,可诱导鼻相关淋巴组织和肠相关淋巴组织T淋巴细胞明显增生,同时诱导其向不同亚群分化。  相似文献   
39.
组织工程多孔支架制备技术进展   总被引:12,自引:0,他引:12  
赵瑾  袁晓燕  姚康德 《化工进展》2002,21(9):644-648
综述了天然或合成生物降解材料为原料的组织工程多孔支架的几种制备方法,包括无纺织物/纤维粘结法、溶液浇铸/粒子洗出法、相分离/冻干法、气体成孔法和三维“印刷”等方法。特别评述了近期组织工程多孔支架研究进展及其在骨、软骨和皮肤等组织修复中的应用。  相似文献   
40.
肾缺血再灌注细胞内钙水平与氧化应激损伤研究   总被引:5,自引:0,他引:5  
目的 观察肾细胞中游离钙([Ca~(2+)]i)及氧自由基在缺血再灌注损伤过程中的改变情况,探讨二者在再灌注肾损伤中发生作用机制。方法 摘除Wistar大鼠左肾,钳夹右侧肾蒂,建立急性缺血再灌注肾损伤模型,应用Fura-2/AM荧光指示剂测定缺血再灌注大鼠肾细胞内[Ca~(2+)]i浓度的变化,同时测定谷胱甘肽过氧化物酶(GSH-Px)活性、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量。结果 缺血再灌注不同时期肾细胞内[Ca~(2+)]i浓度均有不同程度增高,与对照组相比差异有显著意义,各实验组SOD活力水平降低,与对照组相比差异有显著意义,MDA生成高于对照组,GSH-Px在再灌注早期活力减弱,明显低于对照组,晚期活力基本恢复。结论 1.缺血再灌注不同时期大鼠肾细胞内[Ca~(2+)]i超载和不同程度的氧化侵袭,在缺血再灌注肾损伤病理过程中起重要作用;2.再灌注时间与肾细胞内[Ca~(2+)]i超载呈正相关,提示再灌注损伤通过不同机制加重细胞钙超载。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号