首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240066篇
  免费   29383篇
  国内免费   26749篇
电工技术   20305篇
技术理论   8篇
综合类   16621篇
化学工业   50490篇
金属工艺   8700篇
机械仪表   14136篇
建筑科学   9565篇
矿业工程   4161篇
能源动力   7918篇
轻工业   25385篇
水利工程   2903篇
石油天然气   11087篇
武器工业   2403篇
无线电   32792篇
一般工业技术   23272篇
冶金工业   5865篇
原子能技术   3969篇
自动化技术   56618篇
  2024年   1355篇
  2023年   4398篇
  2022年   7805篇
  2021年   9019篇
  2020年   8875篇
  2019年   7996篇
  2018年   7497篇
  2017年   9760篇
  2016年   10647篇
  2015年   11956篇
  2014年   12389篇
  2013年   16040篇
  2012年   18562篇
  2011年   20223篇
  2010年   14472篇
  2009年   14062篇
  2008年   15052篇
  2007年   17103篇
  2006年   16292篇
  2005年   13844篇
  2004年   11597篇
  2003年   9256篇
  2002年   7198篇
  2001年   5483篇
  2000年   4611篇
  1999年   3844篇
  1998年   3179篇
  1997年   2579篇
  1996年   2073篇
  1995年   1732篇
  1994年   1449篇
  1993年   1079篇
  1992年   891篇
  1991年   713篇
  1990年   619篇
  1989年   442篇
  1988年   341篇
  1987年   229篇
  1986年   218篇
  1985年   261篇
  1984年   232篇
  1983年   162篇
  1982年   208篇
  1981年   115篇
  1980年   113篇
  1979年   30篇
  1978年   21篇
  1977年   30篇
  1959年   33篇
  1951年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
心电图信号的频域分析   总被引:2,自引:1,他引:1  
提出了一种简便有效的、由心电图(ECG)曲线提取QRS-T复合波的新方法,从而获得P波(当房颤未发生时)或f波(当房颤时);利用功率谱、自相关、互相关等信号处理技术,对它进行了处理和分析,特别是,比较了未房颤时和发生房颤时的相关信息的显著差别。  相似文献   
72.
磁处理技术是利用磁场对非铁磁性流体作用.使被作用物的性质产生某些期望的变化,从而改善生产效果和使用效益。磁处理对常规钻井液流变性能的影响研究结果表明,磁化能明显改善钻井液性能。通过研究磁化后泡沫钻井液的性质.测定与控制钻井液的电导率,以便从电测曲线上取得更好的地层特性评价。泡沫钻井液的电导率与密度基本呈线性关系,电导率随密度的升高而变大;磁处理后泡沫钻井液的性质发生明显改变.泡沫钻井液的电导率有不同程度的下降,在磁场强度为100mT、蜂数为2的磁场条件下泡沫钻井液的电导率变化率降低最大,电导率平均下降16%左右。  相似文献   
73.
Nanocomposites based on poly(butylene terephthalate) (PBT) and an organoclay (Cloisite 30B) were prepared by melt blending using a twin‐screw extruder. Two kinds of PBTs, ie PBT‐A and PBT‐B, with different inherent viscosities (ηinh), were used for this study (ηinh of PBT‐A and PBT‐B were 0.74 and 1.48, respectively). Dispersion of the clay layers in the PBT nanocomposites was characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile and dynamic mechanical properties and non‐isothermal crystallization temperatures of the nanocomposites were also examined. Nanocomposites based on the higher‐viscosity PBT (PBT‐B) showed a higher degree of exfoliation of the clay and a higher reinforcing effect when compared to the composites based on the lower‐viscosity PBT (PBT‐A). The clay nanolayers dispersed in PBT matrices lead to increases in the non‐isothermal crystallization temperatures of the PBTs, with such increases being more significant for the PBT‐B nanocomposites than for the PBT‐A nanoocomposites. Copyright © 2004 Society of Chemical Industry  相似文献   
74.
The thermal and mechanical properties and the morphologies of blends of poly(propylene) (PP) and an ethylene–(vinyl alcohol) copolymer (EVOH) and of blends of PP/EVOH/ethylene–(methacrylic acid)–Zn2+ ionomer were studied to establish the influence of the ionomer addition on the compatibilization of PP/EVOH blends and on their properties. The oxygen transmission rate (O2TR) values of the blends were measured as well. PP and EVOH are initially incompatible as was determined by tensile tests and scanning electronic microscopy. Addition of the ionomer Zn2+ led to good compatibility and mechanical behaviour was improved in all blends. The mechanical properties on extruded films were studied for 90/10 and 80/20 w/w PP/EVOH blends compatibilized with 10 % of ionomer Zn2+. These experiments have shown that the tensile properties are better than in the injection‐moulded samples. The stretching during the extrusion improved the compatibility of the blends, diminishing the size of EVOH domains and enhancing their distribution in the PP matrix. As was to be expected, the EVOH improved the oxygen permeation of the films, even in compatibilized blends. Copyright © 2004 Society of Chemical Industry  相似文献   
75.
Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene‐co‐(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco‐friendly products. Copyright © 2005 Society of Chemical Industry  相似文献   
76.
Poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐para‐phenylene vinylene] (MEH‐PPV)/silica nanoparticle hybrid films were prepared and characterised. Three kinds of materials were compared: parent MEH‐PPV, MEH‐PPV/silica (hybrid A films), and MEH‐PPV/coupling agent MSMA/silica (hybrid B films), in which MSMA is 3‐(trimethoxysilyl) propyl methacrylate. It was found that the hybrid B films could significantly prevent macrophase separation, as evidenced by scanning electron and fluorescence microscopy. Furthermore, the thermal characteristics of the hybrid films were largely improved in comparison with the parent MEH‐PPV. The UV‐visible absorption spectra suggested that the incorporation of MSMA‐modified silica into MEH‐PPV could confine the polymer chain between nanoparticles and thus increase the conjugation length. The photoluminescence (PL) studies also indicated enhancement of the PL intensity and quantum efficiency by incorporating just 2 wt% of MSMA‐modified silica into MEH‐PPV. However, hybrid A films did not show such enhancement of optoelectronic properties as the hybrid B films. The present study suggests the importance of the interface between the luminescent organic polymers and the inorganic silica on morphology and optoelectronic properties. Copyright © 2004 Society of Chemical Industry  相似文献   
77.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   
78.
The physicochemical and functional properties of convection oven- and freeze-dried gluten meals of two corn varieties were evaluated. The physicochemical properties (water solubility index, water absorption index, Hunter color parameters, and bulk density) and functional properties (water absorption, oil absorption, least gelation concentration, protein solubility, and emulsification properties) of convection-oven and freeze-dried corn gluten meals were compared with each other and soy flour. Freeze-dried corn gluten meals was observed to have lower bulk density (0.244-0.263 kg/m3) and was lighter in color (high L and ΔE) compared to their counterpart convection oven-dried gluten meals. Freeze-dried gluten meals from both corn varieties showed significantly higher oil absorption, water absorption, pH, emulsification, and protein solubility compared to oven-dried corn gluten meals. The gluten meals from both corn varieties had lower water absorption and bulk density but higher oil absorption than soy flour, suggesting the hydrophobic nature of corn proteins. Corn gluten meals formed thin (pourable) emulsions compared to soy flour emulsions, which were thick salad dressing type. Freeze- and convection oven-dried corn gluten meals showed significantly lower protein solubility measured at different pH than soy flour.  相似文献   
79.
Temperature and pH‐responsive interpenetrating polymer network (IPN) hydrogels, constructed with poly(methacrylic acid) (PMAA) and poly(vinyl alcohol) (PVA), by a sequential IPN method, were studied. The characterization of IPN hydrogels was investigated by Fourier‐transform infrared spectroscopy, differential scanning calorimetry (DSC) and swelling under various conditions. The IPN hydrogels exhibited relatively high swelling ratios, in the range 230–380 %, at 25 °C. The swelling ratios of the PMAA/PVA IPN hydrogels were pH and temperature dependent. DSC was used for the quantitative determination of the amounts of freezing and non‐freezing water. The amount of free water increased with increasing PMAA content in the IPN hydrogels. Copyright © 2004 Society of Chemical Industry  相似文献   
80.
Zirconium(IV) tungstoiodophosphate has been synthesized under a variety of conditions. The most chemically and thermally stable sample is prepared by adding a mixture of aqueous solutions of 0·5 mol L−1 sodium tungstate, potassium iodate and 1 mol L−1 orthophosphoric acid to aqueous solution of 0·1 mol L−1 zirconium(IV) oxychloride. Its ion exchange capacity for Na+ and K+ was found to be 2·20 and 2·35 meq g−1 dry exchanger, respectively. The material has been characterized on the basis of chemical composition, pH titration, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. The effect on the exchange capacity of drying the exchanger at different temperatures has been studied. The analytical importance of the material has been established by quantitative separation of Pb2+ from other metal ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号