首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58607篇
  免费   6123篇
  国内免费   3788篇
电工技术   2946篇
技术理论   5篇
综合类   4199篇
化学工业   15343篇
金属工艺   4353篇
机械仪表   3371篇
建筑科学   2781篇
矿业工程   555篇
能源动力   5784篇
轻工业   2910篇
水利工程   744篇
石油天然气   1374篇
武器工业   344篇
无线电   6673篇
一般工业技术   10635篇
冶金工业   1887篇
原子能技术   1153篇
自动化技术   3461篇
  2024年   295篇
  2023年   944篇
  2022年   1496篇
  2021年   1757篇
  2020年   1862篇
  2019年   1681篇
  2018年   1581篇
  2017年   1882篇
  2016年   1947篇
  2015年   1991篇
  2014年   2907篇
  2013年   3615篇
  2012年   3625篇
  2011年   4377篇
  2010年   3217篇
  2009年   3376篇
  2008年   3152篇
  2007年   3822篇
  2006年   3568篇
  2005年   3183篇
  2004年   2710篇
  2003年   2429篇
  2002年   2028篇
  2001年   1734篇
  2000年   1534篇
  1999年   1227篇
  1998年   1137篇
  1997年   951篇
  1996年   808篇
  1995年   716篇
  1994年   586篇
  1993年   500篇
  1992年   420篇
  1991年   297篇
  1990年   242篇
  1989年   223篇
  1988年   153篇
  1987年   106篇
  1986年   82篇
  1985年   61篇
  1984年   77篇
  1983年   46篇
  1982年   32篇
  1981年   18篇
  1980年   15篇
  1979年   10篇
  1966年   7篇
  1963年   5篇
  1959年   20篇
  1951年   30篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
We investigate the problem of efficient wireless power transfer in wireless sensor networks. In our approach, special mobile entities (called the Mobile Chargers) traverse the network and wirelessly replenish the energy of sensor nodes. In contrast to most current approaches, we envision methods that are distributed and use limited network information. We propose four new protocols for efficient charging, addressing key issues which we identify, most notably (i) what are good coordination procedures for the Mobile Chargers and (ii) what are good trajectories for the Mobile Chargers. Two of our protocols (DC, DCLK) perform distributed, limited network knowledge coordination and charging, while two others (CC, CCGK) perform centralized, global network knowledge coordination and charging. As detailed simulations demonstrate, one of our distributed protocols outperforms a known state of the art method, while its performance gets quite close to the performance of the powerful centralized global knowledge method.  相似文献   
12.
The performance of surface ionic conduction single chamber fuel cell (SIC‐SCFC) prepared by the sol gel method was studied on electric characteristics due to the differences of the operating temperature and humidity, the electrode distance and electrolyte film depth, and multiple cells with the series and parallel connections. The SIC–SCFC was arranged the both anode of Pt and cathode of Au on the boehmite electrolyte. The open circuit voltage (OCV) of single cell achieved a maximum of 530mV in the dry gas mixtures of O2/H2=50% in room temperature operation, and but it became decrease as over 60%. The OCV was maintained the constant value between operating temperatures of 30°C to 80°C, and but it was decreased sharply at over 90°C because a humidity on the cell became lower as increasing operating temperature. Then, the cell property was improved to 120°C by adding to the humidity of 70% using a humidifier. The electrode distance and the electrolyte film depth of SIC‐SCFC found to be contributed to the reductions of the cell resistance and the surface roughness on the electrode, respectively. Moreover, the power property of SIC‐SCFC was significantly improved by cell stacks comprised of the series or parallel connection of a cell.  相似文献   
13.
A microchannel heat exchanger with a triangular wave and symmetrical triangular wave structure was proposed in this paper. In addition, a new N-type microchannel heat exchanger was developed to balance the heat transfer performance and pressure drop. The relationship between different configurations of the N structure of the microchannel and the heat transfer performance was analyzed. The results showed that, at a high inlet flow rate, the symmetrical triangular wave microchannel had the best heat transfer performance, followed by the triangular wave microchannel and the straight channel. At the same flow rate, the degree of disturbance of the fluid was highest in the symmetrical N-structure microchannel, and an excellent heat transfer effect was observed.  相似文献   
14.
Spray quality is the critical factor which decides the efficacy of Small Quantity Lubrication (SQL) technology in a high specific energy involved machining process like grinding. Yet, the understanding about spray quality, the actual process mechanics and its effect on machining performance is inadequate. The present work is an attempt to establish a correlation between the spray input variables, quality of the spray and machining performance of SQL grinding through modelling and experiments. Using computational fluid dynamic techniques, the variation of droplet size, droplet velocity, number of droplets and heat transfer coefficient have been analysed at different input parameters and the computed trends have been verified and validated. CFD modelling of spray indicates that it is possible to produce aerosol medium with high heat dissipation ability at moderately high air pressure and low flow rate. It also shows that any increase in atomising air pressure favourably leads to notable increase in wetting area and also results in substantial enhancement in heat dissipation ability. Reduction of residual stress is thus remarkably good. On the other hand, grinding fluid flow rate, if increased, offers significantly better lubricity and reduces the grinding force which also reduces tensile residual stress. Short spell grinding test results are found to be in good agreement with CFD results.  相似文献   
15.
This study addresses the thermo‐diffusion and the diffusion‐thermo phenomena in a semi‐infinite absorbent channel whose walls are contracting/expanding, with heat source/sink effects. The governing partial differential equations with suitable boundary conditions are transformed to a system of dimensionless ordinary differential equations. An analytic solution of the problem has been found using a technique called homotopy analysis method (HAM). HAM gives consistently valid answers to the problem over an extensive variety of parameters and also provides better accuracy. To validate the analytical results, a comparison has been presented with a numerical solution calculated by using the parallel shooting method. The effects of dimensionless parameters, that is, deformation parameter, Reynolds number, Soret and Dufour numbers, and heat source/sink parameter on the expressions of velocity, temperature, and concentration profiles are analyzed graphically to understand the physics of the deformable channel. It has been noted that the velocity across the channel is higher for the expanding channel, as compared to that for the contracting channel. Also the Soret and Dufour number increases the temperature of the fluid, and decreases the concentration. The temperature profile has an increasing behavior in the case of heat source, and a decreasing behavior in the case of heat sink.  相似文献   
16.
In this work, we focus on the Ge nanoparticles (Ge-np) embedded ZnO multilayered thin films. Effects of reactive and nonreactive growth of ZnO layers on the rapid thermal annealing (RTA) induced formation of Ge-np have been specifically investigated. The samples were deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively on Si substrates. As-prepared thin film samples have been exposed to an ex-situ RTA at 600 °C for 60 s under forming gas atmosphere. Structural characterizations have been performed by X-ray Diffraction (XRD), Raman scattering, Secondary Ion Mass Spectroscopy (SIMS), and Scanning Electron Microscopy (SEM) techniques. It has been realized that reactive or nonreactive growth of ZnO layers significantly influences the morphology of the ZnO: Ge samples, most prominently the crystal structure of Ge-np. XRD and Raman analysis have revealed that while reactive growth results in a mixture of diamond cubic (DC) and simple tetragonal (ST12) Ge-np, nonreactive growth leads to the formation of only DC Ge-np upon RTA process. Formation of ST12 Ge-np has been discussed based on structural differences due to reactive and nonreactive growth of ZnO embedding layer.  相似文献   
17.
With increasing consumption of natural gas (NG), small NG reservoirs, such as coalbed methane and oil field associated gas, have recently drawn significant attention. Owing to their special characteristics (e.g., scattered distribution and small output), small-scale NG liquefiers are highly required. Similarly, the mixed refrigerant cycle (MRC) is suitable for small-scale liquefaction systems due to its moderate complexity and power consumption. In consideration of the above, this paper reviews the development of mobile miniature NG liquefiers in Technical Institute of Physics and Chemistry (TIPC), China. To effectively liquefy the scattered NG and overcome the drawbacks of existing technologies, three main improvements, i.e., low-pressure MRC process driven by oil-lubricated screw compressor, compact cold box with the new designed heat exchangers, and standardized equipment manufacturing and integrated process technology have been made. The development pattern of “rapid cluster application and flexible liquefaction center” has been eventually proposed. The small-scale NG liquefier developed by TIPC has reached a minimum liquefaction power consumption of about 0.35 kW·h/Nm3. It is suitable to exploit small remote gas reserves which can also be used in boil-off gas reliquefaction and distributed peak-shaving of pipe networks.  相似文献   
18.
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   
19.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   
20.
The Caputo and Caputo–Fabrizio derivative are applied to study a second‐grade nanofluid over a vertical plate. A comparative analysis is presented to study the unsteady free convection of a second‐grade nanofluid with a new time–space fractional heat conduction. The governing equations with mixed time–space fractional derivatives are non‐dimensionalized and solved numerically, and a comparison between the Caputo and the Caputo–Fabrizio models is made. It is found that the temperature is higher for the Caputo–Fabrizio fractional model than the Caputo model, but the higher velocity only exists near the vertical plate for the Caputo–Fabrizio model than the Caputo model. Moreover, the velocity for the Caputo model will exceed the Caputo–Fabrizio model as y evolves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号