首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   0篇
化学工业   25篇
金属工艺   26篇
机械仪表   7篇
矿业工程   1篇
能源动力   7篇
一般工业技术   27篇
冶金工业   9篇
原子能技术   1篇
  2016年   1篇
  2013年   95篇
  2008年   2篇
  2007年   4篇
  1997年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
31.
Abstract

Current fracture mechanics methods for fatigue assessment, including those that consider thresholds for crack propagation, are based on long crack behaviour. The present work is concerned with an attempt to predict the fatigue strength of welded joints using a fracture mechanics approach that takes into account the fatigue behaviour of short cracks. The methodology estimates the fatigue crack propagation rate as a function of the difference between the applied driving force and the material threshold for crack propagation, which is a function of crack length. The fatigue strength of butt welded specimens stressed transversely was analysed. Experimental results from the literature were used for comparison. Estimations are obtained by using only the fatigue limit and the fatigue propagation threshold for long cracks, and the applied stress distribution along the crack path obtained from simple finite element models. The influence of plate thickness, initial crack length, and reinforcement angle on fatigue strength of butt welded joints was analysed. Results show good agreement with experimental trends.  相似文献   
32.
Abstract

Lap joints of dual phase steel sheets of 1·0 mm were prepared by adhesive bonding, spot welding and weld bonding processes using a one component epoxy base structural adhesive. Mechanical properties of the joints were evaluated by tensile shear and fatigue tests. The size of the weld nugget for both spot weld and weld bond was measured for different welding parameters (current, time) and compared. For identical welding parameters, weld bonded nuggets exhibit higher nugget diameter. Tensile shear strength of weld bonded joints is 40 and 58% higher than spot welded joints and 15 and 39% higher than adhesive bonded joints and for DP590 and DP780 steels respectively. Considering 106 cycles, the endurance limit of weld bonded joint is much higher than spot welded joint but smaller than adhesive bonded joints. Overall the performance of weld bonded joints is superior to those of resistance spot welding.  相似文献   
33.
Abstract

The cyclic stress–strain behaviour of two microalloyed steels with different microstructures has been characterised at room temperature under strain controlled low cycle fatigue. The cyclic stress–strain curve in the double logarithmic plot shows a linear relation for both steels. A transition of the cyclic stress–strain curve from softening to hardening with increasing strain amplitude has been observed with respect to the corresponding tensile curve. The strain amplitude for the onset of cyclic softening to hardening transition has been found to be dependent on grain size. The strain lifetime behaviour, estimated from modified universal slopes equation, shows similar trends as Nb or V bearing microalloyed steels. The cyclic characteristics of the two microalloyed steels have been compared with corresponding predeformed state carried out under stress controlled conditions. While, cyclic saturation was observed in case where the extent of predeformation was within the Lüders strain, cyclic softening occurred when it exceeded the Lüders strain. It has been attempted to provide a mechanistic understanding of the differences in the cyclic behaviour of the two steels owing to the microstructure and predeformation.  相似文献   
34.
《钢铁冶炼》2013,40(7):555-560
Abstract

Semisolid processing, already a well established manufacturing route for the production of intricate, thin walled aluminium and magnesium parts with mechanical properties as good as forged grades, faces a major challenge in the case of steels. The tool materials must withstand complex load profiles and relatively higher forming temperatures for thousands of forming cycles for this near-net shape process to be attractive for steels on an industrial scale. The potential of a Ni-based superalloy, Inconel 617, reported to exhibit superior thermal fatigue resistance in demanding tooling applications, was investigated. The response to thermal cycling of this alloy at high temperatures was compared with that of X38CrMoV5 hot work tool steel widely used in the manufacture of conventional forging dies. The favourable thermophysical properties of the latter were completely negated by its limited temper resistance, while the Inconel 617 alloy responded to thermal cycling by the usual heat cracking mechanism.  相似文献   
35.
《钢铁冶炼》2013,40(1):41-46
Abstract

The principal failure mechanism of steel thixoforming dies is thermal fatigue owing to forging pressures much lower than those encountered in conventional forging. This makes a properly designed thermal fatigue test the best method to identify suitable tooling materials for the steel thixoforming environment. Samples of X32CrMoV33 hot work tool steel and CrNiCo alloy were cycled thermally between 450 and 750°C, every 60 s for a total of 1500 cycles. While the thermal stresses generated at the surfaces of the two materials were very similar, their responses to thermal cycling were markedly different. The X32CrMoV33 steel was softened by nearly 40% after only 400 cycles, raising serious concerns over its temper resistance under steel thixoforming conditions. The extensive oxidation and subsequent spalling of oxide scales suffered by the X32CrMoV33 hot work tool steel is also a major shortcoming. The performance of the CrNiCo alloy, on the other hand, was judged to be satisfactory with a much thinner heat affected zone and a much better oxidation resistance. Lack of evidence for heat checking in this alloy after 1500 cycles is an encouraging sign.  相似文献   
36.
Abstract

Fatigue life investigations have been made for hollow rollers in pure normal loading. Different hollowness percentages between 20 and 80% have been tested to find the optimum percentage hollowness that gives the longest fatigue life. Two main models were built for this purpose: model 1 with two identically sized rollers and model 2 with two non-identically sized rollers. In each model, two cases have been studied: when both rollers are hollow and when one roller is hollow while the other one is solid. The Ioannides–Harris (IH) theory was used to calculate the relative fatigue life of the hollow rollers with respect to solid rollers under the same loading. Investigations have been made for five different materials: CVD 52100, carburised steel, VIMVAR M50, M50NiL and induction hardened steel. The finite element package ABAQUS has been used to study the stress and deformations in the loaded rollers. In general, the optimum hollowness percentage with the longest fatigue life ranges between 60 and 70% based on the kind of the material, whether the rollers are of the same or different size and whether one or both rollers are hollow. Using the IH theory for fatigue life calculation resulted in having infinite fatigue life for those rollers made of induction hardened steel that relatively has high fatigue limit value. Rollers in the optimum range are flexible enough to get the best redistribution of stress in the contact zone. For models of a hollow cylindrical roller in contact with a solid roller, the optimum hollowness is around 70%. When both cylindrical rollers are hollow, the optimum hollowness decreases between 60 and 65%. At the optimum hollowness, small differences in the fatigue life have been found between models of one hollow roller and models of two hollow rollers, even though having both hollow rollers means less weight, thus saving more material and more stability for the system.  相似文献   
37.
Abstract

The effect of the volume fraction of eutectic carbides on the thermal fatigue resistance of multicomponent white cast iron has been investigated. Thermal fatigue tests were carried out for 100 and 500 cycles. Nucleation of thermal fatigue cracks took place mostly at the specimen surface, induced by mechanical and metallurgical stress raisers. The crack nucleated in the matrix as well as at the carbide/matrix interface or at the carbide itself. The surface crack density increased slightly for increasing volume fraction of eutectic carbides from 9 to 14%, approximately. Crack propagation took place mostly at the carbide/matrix interface or through the carbide. The propagation rate was affected by the carbide distribution: the higher was the 'carbide continuity/mean free path between carbides' ratio, the higher was the propagation rate. The propagation rate decreased with increasing test time, regardless of the volume fraction of eutectic carbides.  相似文献   
38.
Abstract

An effect of the crystallographic anisotropy of β-tin grains on thermal fatigue properties of Sn–1Ag– 0˙5Cu and Sn–3Ag–0˙5Cu lead free solder interconnects were discussed. From an orientation imaging microscopic observation, three types of microstructures (single crystal-like, fine grain type and large grain type) were observed in both solders. The single crystal-like microstructure disappeared and the large grain type occurred by further fatigue due to recrystallisation. Because single crystal-like microstructure had the {100} plane approximately parallel to strain concentrated areas, recrystallisation could be retarded if the slip systems of {100}<011> or {100}<010> operate and an amount of thermal strain decreases because these slip systems have the larger critical resolved shear stress due to an anisotropic nature of β-tin. One of the reasons Sn–3Ag–0˙5Cu had longer thermal fatigue life than Sn–1Ag–0˙5Cu can be the number of the single crystal-like or the fine grain type microstructures in Sn–3Ag–0˙5Cu were larger.  相似文献   
39.
Abstract

A Ti containing interstitial free steel was warm rolled in the temperature range 500–800°C, using wedge shaped slabs to produce a range of strains in a single rolling test. Some plane strain compression tests, under similar conditions, were carried out to obtain accurate stress–strain data. Variations in substructural features including subgrain sizes, subgrain aspect ratios, and misorientations between subgrains were quantitatively measured by TEM. Close correlation was observed between mechanical behaviour and variations in the substructure at different temperatures. At the lower temperature (500°C), the material showed cold worked characteristics, but as the deformation temperature was increased the effects of recovery became more pronounced, and hot working behaviour was obvious in the flow stress as well as in the substructural observations at 800°C.  相似文献   
40.
Abstract

A significance of two factors, fine dispersoids in a solder and the anisotropic nature of β-Sn, on thermal fatigue endurance is discussed using flip chips connected by Sn–xAg–0·5Cu (x: 1, 3 and 4 mass-%) lead free solders, together with Sn and Sn–1·2Ag–0·5Cu–0·05Ni, for comparison. Both 3Ag and 4Ag showed better thermal fatigue properties than Sn and 1Ag, and a thermal fatigue life of 1·2Ag with Ni was close to that of 3Ag despite of its low silver content. Microstructures of the solders before thermal fatigue tests can be classified into a single crystal-like and a fine grain type. However, this classification, which affects the amount of thermal strain by the anisotropic nature of β-Sn, cannot accurately describe thermal fatigue lives observed. On the other hand, Vickers microhardness of the solders, which was resulted from fine dispersoids, showed good relationship with observed thermal fatigue endurance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号