首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   964篇
  免费   25篇
  国内免费   14篇
电工技术   3篇
综合类   37篇
化学工业   437篇
金属工艺   97篇
机械仪表   19篇
建筑科学   44篇
矿业工程   29篇
能源动力   23篇
轻工业   86篇
水利工程   1篇
石油天然气   81篇
武器工业   1篇
无线电   5篇
一般工业技术   105篇
冶金工业   21篇
原子能技术   10篇
自动化技术   4篇
  2024年   1篇
  2023年   9篇
  2022年   16篇
  2021年   30篇
  2020年   20篇
  2019年   20篇
  2018年   17篇
  2017年   24篇
  2016年   21篇
  2015年   27篇
  2014年   34篇
  2013年   65篇
  2012年   62篇
  2011年   75篇
  2010年   45篇
  2009年   62篇
  2008年   41篇
  2007年   60篇
  2006年   48篇
  2005年   38篇
  2004年   40篇
  2003年   31篇
  2002年   39篇
  2001年   18篇
  2000年   32篇
  1999年   24篇
  1998年   17篇
  1997年   13篇
  1996年   11篇
  1995年   19篇
  1994年   15篇
  1993年   7篇
  1992年   8篇
  1991年   4篇
  1990年   3篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
排序方式: 共有1003条查询结果,搜索用时 0 毫秒
81.
In this work, bitumen modification, by “in situ” formation of poly-urethane/urea-based polymers in the bituminous matrix, has been studied. This procedure consisted of a first modification by the addition of MDI-PPG reactive prepolymer (polypropylene-glycol, PPG, functionalized by polymeric MDI, 4,4′-diphenylmethane diisocyanate), in a first stage, and a further modification of the new bitumen-MDI-PPG molecules as water was added, in a second stage. Thin layer chromatography, TLC-FID, and infrared spectroscopy, FTIR, techniques have been used to follow the reactions occurring in four different types of bitumen. Rheological measurements have demonstrated that the resulting bitumen modification strongly depends on the processing conditions selected during the first stage. Thus, bitumen modification degree after water addition increases as processing time does. Furthermore, water addition has been found to promote bitumen foaming at low processing temperatures, which could be used in novel applications where a foamed binder is required. As a result, a reactive bitumen modification mechanism, involving a set of three chemical reactions, has been proposed.  相似文献   
82.
《Ceramics International》2021,47(20):28603-28613
Foam glass is a lightweight and high-strength building and decoration material with superior performance in heat insulation, sound absorption, moisture resistance and fire protection. The use of waste glass powder and fly ash to prepare foam glass is one of the most important ways to utilize solid waste as a resource. In this study, waste glass powder and fly ash were used as raw materials to prepare foam glass by a hydrothermal hot pressing–calcination method. The effects of fly ash content (0 wt%, 10 wt%, 20 wt%, 30 wt%), heating rate (1 °C/min, 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min) and calcination temperature (600 °C, 700 °C, 750 °C, 800 °C, 850 °C, 900 °C) on the microscopic morphology, density, compressive strength, porosity and other properties of the foam glass samples were studied. Their microstructure and morphology were analyzed by thermogravimetric analysis–mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. At a fly ash content of 10 wt%, the heating rate was 5 °C/min, the calcination temperature was 800 °C, the foam glass density was 0.3 g/cm3, the compressive strength was 1.65 MPa, the total porosity was 75.5%, and the effective thermal conductivity was 0.206 W/m·K. The effective thermal conductivity models of the composite materials were used to verify the experimental data. The relationship between the thermal conductivity of foam glass materials and the related influencing factors was investigated.  相似文献   
83.
A novel protein hydrolysate was prepared from the mixture of oilseed flours (soybean, sesame and peanut) and determined physicochemical & functional properties along with comparison of individual oilseed flour hydrolysate of soybean. Mixed flour obtained from oilseed flours viz. soybean, sesame and peanut by using calculated amounts in the ratio of 1.1:1.7:0.7, respectively was used as a starting raw material having balanced amino acid profile. Protein hydrolysates were prepared from mixed flour and soybean flour by a double enzyme treatment method to a level of 40% degree of hydrolysis. The dried protein hydrolysate prepared from the mixed flour had 72% crude protein. This protein was characterized by gel filtration chromatography and SDS-PAGE. Comparison of the amino acid profile of the protein hydrolysate from mixed flours and soyabean flours showed a significant increase in the former one with respect to amino acid contents usually deficient of single oilseed flour hydrolysate. The product is creamish yellow in colour and had a solubility of >90% over a wide pH range of 2–10. The mixed flour protein hydrolysate showed better functional attributes such as foaming, as compared to that from soybean flour alone.  相似文献   
84.
随着油田水平井开发时间的延长,受储层物性及注采驱替系统难以建立等因素的影响,水平井部分开发区域地层压力保持水平较低,地层能量不足,修井作业过程中修井液漏失严重,作业循环建立困难,导致施工作业周期长、效率低等问题。依据泡沫流体特点,研发了一种强稳定性的纳米复合泡沫凝胶修井液,与常规活性水修井液相比,其稳定性高、密度低、降漏失性强,其主要配比为:1.4%起泡剂+0.25%纳米二氧化硅+0.5%聚合物+0.05%交联剂+0.02%稳定剂。该修井液体系主要以微泡作为分散相,凝胶为骨架,依靠泡沫的强承托能力和泡沫、凝胶的双层封堵特点,达到暂堵漏失地层、降低修井液漏失的目的。室内模拟实验表明,对于模拟岩心,初期体系滤失量几乎为零,稳定后漏失速率小于10 mL/min,显示出其良好的承压能力与降漏失特性。现场实验表明,该修井液性能稳定,能有效暂堵漏失层段、降漏失效果较好。研究表明,纳米复合泡沫凝胶修井液具有良好的暂堵降漏失效果,在低压水平井修井作业具有很好的应用前景。  相似文献   
85.
为提高泡沫钻井液的稳定性,向体系中引入纳米材料,并研究了纳米材料润湿性对于泡沫质量的影响。根据Box-Behnken Design设计原理,采用三因素三水平响应曲面法,优化了起泡剂BS-12、亲水性纳米SiO2和增黏剂XC的加量,探究了它们之间交互作用对于泡沫综合指数的影响,并以此为基础研制了泡沫钻井液体系。结果表明,纳米材料润湿性会显著影响不同类型起泡剂的泡沫质量,疏水性纳米材料能够提高阴离子起泡剂SDS的泡沫稳定性,但对两性离子起泡剂BS-12的泡沫起泡量和半衰期呈现负相关关系,亲水性纳米材料才能提高两性离子起泡剂BS-12的泡沫稳定性;通过响应曲面优化设计得到的最优浓度配比为:0.6% BS-12+4%纳米SiO2+0.3% XC。响应曲面分析表明,对于泡沫综合指数的显著性影响程度,纳米材料浓度 > 起泡剂浓度 > XC浓度;纳米稳定的泡沫钻井液体系性能评价表明,该体系表观黏度为42mPa·s,密度为0.81 g/cm3,半衰期达60 h,能长时间保持性能稳定,抑制性强,线性膨胀率较清水下降65%,储层保护效果好,煤岩岩心气测渗透率恢复率在90%以上,携岩效果好,岩屑和煤屑的沉降速度较清水降低92%以上,能够满足现场煤层气钻井的需要。  相似文献   
86.
Foam is a frequently used compressible fluid in drilling applications. Cuttings transport with foam has been a focus of interest for years. Few studies have been conducted on vertical well configuration and successfully applied. However, less is known about the performance of foam in highly inclined and horizontal wells. In this study, a layered model is developed for describing cuttings transport in horizontal wells. Due to the presence of a cuttings bed, generalized rheological model parameters for foam are modified analytically as a function of fluid properties and complex conduit geometry. Using these parameters, friction between the fluid and the wellbore, between the layers and slip between the cuttings and the fluid are determined. Model performance is examined using experimental data established at The University of Tulsa's low pressure-ambient temperature flow loop. Results showed that, developed model can predict developed cuttings bed thickness and pressure loss in the wellbore with an error of less than 20%. It has been observed that very high foam flow velocities are required in order to prevent a thick bed development in the wellbore. Also, low-viscosity fluids show better performance on preventing bed development inside the wellbore than high-viscosity fluids at the same flow rates.  相似文献   
87.
LNG接收站卸料管道保冷层厚度优化模拟   总被引:2,自引:0,他引:2  
国内LNG接收站卸料管道保冷层多为组合式保冷,保冷层普遍存在着材料浪费的问题。为此,应用Ansys Workbench(AWE)工作平台分别建立了LNG接收站典型的外径为40 in、10 in(1 in=25.4 mm)卸料管道保冷层传热及优化模型。在满足使用要求及设计标准的前提下,对保冷层组合厚度进行优化模拟,并分析了保冷材料热导率受温度变化影响时,其对管道保冷性能的影响。结果表明:优化后,40 in管道每1 000 m可节省投资156万元,10 in管道每1 000 m可节省投资25.62万元;在设计时,如不考虑保冷层热导率随温度变化而采用平均热导率计算,保冷层厚度设计偏保守。对组合保冷材料交接点处温度及各类输入参数敏感性进行分析后得出结论:优化后管道各类指标性能均满足使用要求;内层保冷材料厚度对总投资及热流密度影响最大,大气温度对交接点处温度影响最大。该优化模拟结果及基于AWE工作平台流程化设计优化方法可为LNG管道保冷设计提供参考。  相似文献   
88.
泡沫水泥的性能主要取决于泡沫体积分数。通过水泥浆发泡实验,制备了具有良好沉降稳定性的泡沫水泥,深入系统分析了泡沫体积分数的变化对泡沫水泥的性能影响。研究结果表明,随着泡沫体积分数的增大,泡沫水泥浆变得黏稠,失水量降低;同时,泡沫水泥石抗压强度基本成线性降低,气测渗透率升高,弹塑性能增强。泡沫体积分数控制在30%左右,泡沫水泥石具有较好的抗压强度和弹塑性能,同时满足气层的有效封固要求,为现场泡沫水泥浆密度确定和施工安全提供指导。  相似文献   
89.
抽油井的流压可间接地由动液面折算,但是,由于泡沫段的影响,使得动液面资料误差大而不能准确地计算出抽油井的真实流压值。本文把泵以上混气油柱折算成不含气的纯油柱,即去掉拟泡沫段的拟真液面,使动液面资料真实、可靠,能够较正确地反映抽油井的生产状况和流动压力,为油井采取措施提供可靠依据。该项技术在桥口油田现场应用中已取得较好的效果。  相似文献   
90.
新型泡沫稳定剂氧化叔胺的合成研究   总被引:4,自引:0,他引:4  
介绍了用十二胺合成氧化叔胺的方法,研究了叔胺及氧化叔胺的合成工艺条件和影响反应的因素.泡沫稳定实验显示氧化叔胺是一种较好的新型泡沫稳定剂.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号