首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   1篇
  国内免费   24篇
电工技术   1篇
化学工业   36篇
金属工艺   223篇
机械仪表   11篇
建筑科学   2篇
矿业工程   1篇
能源动力   18篇
轻工业   1篇
石油天然气   1篇
武器工业   1篇
无线电   15篇
一般工业技术   164篇
冶金工业   118篇
自动化技术   7篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   539篇
  2011年   3篇
  2007年   20篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2002年   1篇
  2001年   1篇
  1999年   6篇
  1998年   7篇
  1990年   1篇
排序方式: 共有599条查询结果,搜索用时 0 毫秒
101.
Abstract

The aim of this paper is to study the influence of the initial microstructure of several Mg–Al alloys on their superplastic formability and on their post-forming microstructure and mechanical properties. Various thermomechanical processing routes, such as annealing, conventional rolling, severe rolling and cross rolling, were used in order to fabricate AZ31 and AZ61 alloys with different grain sizes. These materials were then blow formed into a hat shaped die. It was found that the processing route has only a small effect in the formability of Mg–Al alloys or on the post-forming microstructures and properties due to rapid dynamic grain growth taking place at the forming temperatures. Nevertheless, good formability is achieved as a result of the simultaneous operation of grain boundary sliding and crystallographic slip during forming.  相似文献   
102.
Abstract

In this study, the Ti–6Al–4V alloy was diffusion bonded to austenitic stainless steel at temperatures of 820, 885, 930 and 980°C, under a pressure of 5 MPa for 30 min. The effect of temperature on interface formations and microstructure was investigated using a scanning electron microscope (SEM), energy dispersive spectrograph (EDS) microanalyses, X-ray diffraction and shear strength of bonded specimens. The results showed that intermetallic phases and σ-phase formed in the interface region.  相似文献   
103.
Abstract

Vacuum hot roll bonding of titanium alloy and stainless steel using a nickel interlayer was investigated. No obvious reaction or diffusion layer occurs at the interface between stainless steel and nickel. The interface between titanium alloy and nickel consists of an occludent layer and diffusion layers, and there are the intermetallic compounds (TiNi3, TiNi, Ti2Ni and their mixtures) in the layers. The total thickness of intermetallic layers at the interface between titanium alloy and nickel increases with the bonding temperature, and the tensile strength of roll bonded joints decreases with the bonding temperature. The maximum tensile strength of 440·1 MPa was obtained at the bonding temperature of 760°C, the reduction of 20% and the rolling speed of 38 mm s–1.  相似文献   
104.
Abstract

Many aspects of the crystallographic texture which develops when austenite transforms into martensite or bainite are well established because the process by which the parent lattice is transformed into that of the product is mathematically defined. This is not the case when the ferrite forms by a reconstructive mechanism. The allotriomorphic ferrite nucleates heterogeneously at austenite grain boundaries, and although a reproducible, low energy orientation relationship is expected to exist between the ferrite and one of the austenite grains with which it is in contact, there are reports that the ferrite can simultaneously adopt this orientation with more than one austenite grain. The authors examine this possibility using crystallographic theory in order to assess the probability of such events as a function of the strength of the texture within the austenite before its transformation.  相似文献   
105.
Abstract

The present work aims at studying structure–property correlations in an explosively clad HSLA steel with austenitic stainless steel of AISI 304L grade. The clad plate was subjected to hot rolling followed by a quenching and tempering treatment to achieve better mechanical properties in the base plate. Optical microscopy studies revealed that the interface between the two steels was wavy in the as clad plate and the waviness decreased substantially due to hot rolling. Subsequent heat treatment has not shown any significant effect either. The base plate had tempered martensite/bainite structure in as clad or heat treated conditions and ferrite-pearlite-bainite structure in hot rolled condition. The grains were finer and elongated near the interface. The stainless steel exhibited equiaxed grain structure in as clad, hot rolled or heat treated plates. Tensile properties and charpy impact energy of the base plate were lowered due to hot rolling and then increased substantially due to heat treatment. The microhardness was observed to be a maximum at the bond interface for all three conditions studied. The shear bond strength was the highest in the as clad condition and decreased for the rolled as well as heat treated conditions. Scanning electron microscopy fractography on shear bond specimens revealed the presence of predominantly equiaxed dimples with few regions of rubbed fracture. Quantitative electron probe microanalysis across the bond interface indicated linear change in concentrations of nickel, chromium and manganese between the levels appropriate to the clad layer and base metal.  相似文献   
106.
Abstract

In the present paper, the effects of the heat treatment processes with two conditioning treatments and four quenching–tempering processes on the mechanical properties of 2·25Cr–1Mo–0·25V high strength low alloyed (HSLA) steel are investigated. The results show that the conditioning treatments have obvious effects on the low temperature impact energy but little effect on the tensile strength. The elevation of the final austenitising temperature increases the strength, whereas it results in the decrease in the low temperature impact energy due to the coarse microstructure. The results of the fracture surfaces analysis further make sure that the fracture surfaces of tensile specimens all exhibit ductile characters with a lot of dimples. However, the fracture surfaces of impact specimens exhibit two typical fracture characters, i.e. the ductile and brittle fracture surface corresponding to the fine and coarse microstructures respectively. In addition, the elongation and reduction in area seem to be insensitive to the heat treatments. Meanwhile, the impact fracture mode is more sensitive to the grain size and not to the low temperature impact energy.  相似文献   
107.
Abstract

The present study investigates the conditions required for forming a hybrid coating consisting of an outer nickel aluminide layer and an inner nickel layer on alloy steels. A commercial alloy steel of 9Cr–1Mo was used as a substrate. Electroless and electronickel plating processes were used to form an initial nickel layer on the steel. The AlCl3 activated packs containing pure Al as a depositing source were then used to aluminise the nickel deposit at temperatures ≤650°C. The effect of phosphorus or boron content in the initial nickel layer deposited with the electroless nickel plating solutions using hypophosphite or boron–hydrogen compound as reducing agent was investigated in relation to the spallation tendency of the coating either immediately after the aluminising process or during the thermal annealing post-aluminising process. Under the aluminising conditions used, the outer nickel aluminide layer formed was Ni2Al3. For the electroplated nickel deposit, the growth kinetics of the outer Ni2Al3 layer during the pack aluminising process was found to obey the parabolic rate law with a parabolic rate constant being 12·67 μm at 650°C for 2 wt-%AlCl3 activated pack containing 4 wt-% pure Al as a deposition source.  相似文献   
108.
Abstract

In the present investigation, the conditions for inclusion formation in two Ti deoxidised steels and one Al–Ca deoxidised steel have been examined by means of optical and electron microscopy, in combination with a thermo dynamic analysis of the phase relations involved. It is concluded that the Ti containing inclusions form as a result of a series of reactions occurring in the ladle, during solidification and in the solid state. The important solid state reaction products are MnS, TiN, and MnOTiO2 . The presence of Mn rich compounds at the surface of the inclusions is consistent with the observation of a Mn depleted zone in the surrounding steel matrix. In contrast, the primary inclusions in the Al–Ca deoxidised steel are complex oxysulphides, which are thermodynamically more stable and can therefore form in the liquid state.  相似文献   
109.
Abstract

Cylindrical specimens of AISI 4340 steel, which were heat treated by quenching in oil followed by tempering at either 315 or 425°C, were impacted in a Hopkinson pressure bar at different impacting speeds. It was found that when strain and strain rate reached certain values, adiabatic shear bands (or plastic deformation zones) were formed in the specimens. The adiabatic shear bands appeared either in a circle on the transverse section, a hyperbola on different longitudinal sections without the central axis of the cylinder, and a triangle on the longitudinal section through the central axis of the cylinder. From these observations, it can be concluded that the plastic deformation localisation zone is limited in a thin conical shell in three dimensions. It was further confirmed that the adiabatic shear bands initiated along the maximum shear stress directions. In addition, the adiabatic shear bands in the specimens tempered at 315°C appeared white, while those in specimens tempered at 425°C had deformation characteristics. This indicates that the appearance of adiabatic shear bands is related to the hardness and microstructure of the tested steel.  相似文献   
110.
Abstract

The effect of the finish rolling temperature (FRT) on recrystallisation behaviour in hot bands of an electrical steel containing 1·3%Si was investigated. Four sequential passes of hot rolling were carried out on the 1·3%Si electrical steel, with finish rolling temperatures ranging from 980 to 700°C, followed by isothermal annealing at 720°C. The experimental results showed that when Ar 1 <FRT <Ar 3, fine equiaxed subgrains formed at the boundaries between deformed and non-deformed grains in a necklacelike arrangement, and strain induced boundary migration (SIBM) was the main mechanism corresponding to the formation of recrystallisation nuclei for steels finish rolled below Ar 1. However, the study also demonstrated that when FRT <(Ar 1­100 K), a second nucleation mechanism, i.e. subgrain growth, became active in recrystallisation, this resulted in an increase of nucleus density. Steels in which SIBM was the dominant mechanism of recrystallisation possessed the largest grain size, and strongest textures with major component {100}〈110〉.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号