首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   2篇
  国内免费   22篇
电工技术   1篇
化学工业   36篇
金属工艺   223篇
机械仪表   11篇
建筑科学   2篇
矿业工程   1篇
能源动力   18篇
轻工业   1篇
石油天然气   1篇
武器工业   1篇
无线电   14篇
一般工业技术   164篇
冶金工业   118篇
自动化技术   7篇
  2023年   1篇
  2021年   3篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   539篇
  2011年   3篇
  2007年   20篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2002年   1篇
  2001年   1篇
  1999年   6篇
  1998年   7篇
  1990年   1篇
排序方式: 共有598条查询结果,搜索用时 359 毫秒
531.
《粉末冶金学》2013,56(2):183-188
Abstract

An analytical densification model describing the final stages of hot pressing and sintering has been developed and found to be consistent with empirical findings. The behaviour of composite powders for the matrices of diamond tools has been studied under hot pressing conditions. Differential scanning calorimetry was used to determine the heat capacity at constant pressure C p of pure Co, 663Cu, and composite iron- and cobalt based powders (also containing WC, Ni and 663Cu). The relationship between C p and composite densification has been analysed, and it has been found that optimised rare earth additions to the iron based composite powders can produce C p characteristics close or equivalent to that of pure Co powders. This modified composite powder has been used to hot press diamond drill and saw bits that show good properties. Employing a densification regime guided by the dynamic model has been found radically to improve stability in service (bend strength, hardness, impact, ductility and porosity).  相似文献   
532.
Grabke  H. J.  Muller-Lorenz  E. M.  Strauss  S.  Pippel  E.  Woltersdorf  J. 《Oxidation of Metals》1998,50(3-4):241-254
The presence of easy-diffusion paths is veryimportant for fast formation or healing of a protectiveCr-rich oxide scale for resistance of chromia-formingsteels against metal dusting. Such easy-diffusion paths, grain boundaries, subboundaries, anddislocations are provided by a fine-grainmicrostructure, cold and/or surface working —polishing, grinding, machining, sand blasting. Theirimportance and effectiveness are demonstrated by various laboratory resultsand also by a failure case and their appearance is shownby TEM studies on ground steel specimens.  相似文献   
533.
Otero  E.  Pardo  A.  Perez  F. J.  Utrilla  M. V.  Levi  T. 《Oxidation of Metals》1998,49(5-6):467-484
The corrosion resistance of a 12CrMoV alloy incontact with a molten mixture of (52-48)mol.%PbCl2-KCl, similar to that found inwaste incineration plants, has been studied. Thecorrosion kinetics have been analyzed using continuous-currentelectrochemical techniques and electrochemical impedancespectroscopy (EIS). Studies were performed to determinethe influence that temperature and the presence of carbon in the salt have on the corrosion rate.Scanning electron microscopy (SEM) and electron-probemicroanalysis (EPMA) were used as additional analyticaltechniques to analyze the corrosion products in order to elucidate the corrosionmechanism.  相似文献   
534.
Evans  H. E.  Donaldson  A. T. 《Oxidation of Metals》1998,50(5-6):457-475
Electron-probe microanalysis (EPMA) measurementsare reported of the residual silicon and chromiumconcentrations in thin sections (0.38 mm) of a20Cr-25Ni-Nb-stabilized austenitic steel oxidized in aCO2/1% CO environment for maximum periods of around40,000 hr at temperatures in the range 900 to 950°C.The depletion profiles obtained have been analyzed usingthe theoretical treatment of Whittle and Cowen-Webster. It is found that silicon depletion occursslowly because of the low rate of thickening of thesilica interlayer formed below the much-thicker,chromia-surface layer. This, coupled with relativelyrapid diffusion within the steel, leads to a flatdepletion profile. By contrast, the more rapid oxidationof chromium develops large concentration gradients ofthat element in the alloy in the vicinity of the oxidemetal interface. In each case, the soluteconcentration at this interface was very much largerthan that for equilibrium with the respective oxide,indicating that the oxidation kinetics were determined by transport within the oxide layer rather thanin the steel. In all the examples studied, thetheoretical analysis produced good agreement with thedepletion measurements using oxidation rate constants consistent with the metallographic measurementsand diffusion coefficients of similar value to thosereported in the literature.  相似文献   
535.
Abstract

The effect of molecular structure of polyethylene (PE) [low density PE (LDPE), linear LDPE and high density PE] and silane/peroxide concentration on the grafting level and gel content in silane crosslinking process has been studied. The effect of incorporation of ethylene vinyl acetate (EVA) copolymer on the rate of crosslinking and thermal properties of PEs has been reported. The order of gel content was LDPE>linear LDPE>high density PE. With the incorporation of EVA, the rate of crosslinking increased. The degree of crystallinity did not change with crosslinking significantly. However, the shape of melting and crystallisation peaks changed, and two regions due to gel and sol parts were formed. In EVA/PE blends, two melting points were observed for both crosslinked and uncrosslinked samples. The SEM images showed the droplet matrix morphology with the EVA as the dispersed phase, especially for EVA/LDPE blend. The EVA/PE blends failed in hot set test, while the origin of PEs passed the hot set test successfully.  相似文献   
536.
One of the most important factors in corrosion prevention by protective coatings is the loss of adhesion of the coating under environmental influence. Thus, adhesion strength is often used when characterizing protective properties of organic coatings on a metal substrate. In this work, the adhesion of different epoxy primers (pigment-free, zinc-rich and chromate-based) was examined on steel. Both the dry and wet adhesion strengths of organic primers were measured directly by a pull-off standardized procedure, as well as indirectly by the NMP test. The corrosion stability of coated samples was investigated by electrochemical impedance spectroscopy. It was shown that under dry test conditions all the samples showed very good adhesion. However, different trends in adhesion for different primers during exposure to the corrosive agent (3% NaCl solution) were observed. The lowest adhesion values were obtained for chromate-based epoxy primer; however, the change in adhesion of this protective system during immersion in 3% NaCl solution for 25 days was the smallest of all investigated samples. Electrochemical impedance measurements in 3% NaCl solution confirmed good protective properties of pigmented epoxy primers on steel, i.e., greater values of pore resistance and charge-transfer resistance, and smaller values of coating capacitance and double-layer capacitance, were obtained for these protective systems.  相似文献   
537.
Abstract

To elucidate the microcracking (ductility dip cracking) mechanism in the multipass weld metal of alloy 690, the hot ductility of the reheated weld metal was evaluated using three different filler metals with varying contents of impurity elements such as P and S. Hot ductility of the weld metal decreased at temperatures over 1400 K, and the weld metal containing a low quantity of impurity elements showed much higher ductility than that containing a high quantity of impurity elements. Local deformability at high temperature of the alloy 690 reheated weld metal was compared with that of Invar alloy. Grain boundary sliding in alloy 690 occurred not in the intermediate temperature range (800–1000 K), where grain boundary sliding was activated in Invar alloy, but at high temperatures just below the melting temperature of alloy 690. The computer simulation of microsegregation suggested that the deterioration of hot ductility is caused by the grain boundary segregation of impurity elements during the multiple thermal cycling. The ductility dip cracking in the reheated weld metal resulted predominantly from the embrittlement of grain boundaries due to the imbalance between intergranular strength and intragranular strength at high temperature.  相似文献   
538.
Abstract

The effect of addition of La to a filler metal on microcracking (ductility dip cracking) in the multipass weld metal of alloy 690 was investigated with the aim of improving its microcracking susceptibility. The susceptibility to ductility dip cracking in the reheated weld metal could be greatly improved by adding 0·01–0·02 wt-%La to the weld metal. Conversely, excessive La addition to the weld metal led to liquation and solidification cracking in the weld metal. Hot ductility of the weld metal at the cracking temperature was greatly improved by adding 0·01–0·02 wt-%La to the weld metal, implying that the ductility dip cracking susceptibility was decreased as a result of the desegregation of impurity elements of P and S to grain boundaries due to the scavenging effect of La. The liquation and solidification cracking resulting from excessive addition of La to the weld metal is attributed to the formation of liquefiable Ni–La intermetallic compound. A multipass welding test confirmed that microcracks in the multipass weldment were completely prevented by using a filler metal containing an addition of 0·01 wt-%La.  相似文献   
539.
Abstract

The use of active flux in tungsten inert gas (TIG) welding is known to increase its weld depth. The present paper involves study of active flux laser beam welding (ALBW) of austenitic stainless steel sheets with respect to its effect on plasma plume, microstructure and mechanical properties of the resultant weldments. ALBW performed with SiO2 as the flux significantly modified shape of the fusion zone (FZ) to produce narrower and deeper welds. Plasma plume associated with the process was considerably smaller and of lower intensity than that produced during bead on plate laser beam welding (LBW). Flux addition during LBW produced thin and rough weld bead associated with humping. The development of such a weld bead is cause by reversal in the direction of Marangoni flow by oxygen induced inversion of surface tension gradient, widely fluctuating plasma plume and presence of oxides on the weld pool surface preventing free flow of the melt. Active flux laser weldments exhibited lower ductility than that of bead on plate laser weldments.  相似文献   
540.
Abstract

Efforts to reduce vehicle weight and improve crash performance have resulted in increased application of advanced high strength steels (AHSS) and a recent focus on the weldability of these alloys. Resistance spot welding (RSW) is the primary sheet metal welding process in the manufacture of automotive assemblies. Friction stir spot welding (FSSW) was invented as a novel method to spot welding sheet metal and has proven to be a potential candidate for spot welding AHSS. A comparative study of RSW and FSSW on spot welding AHSS has been completed. The objective of this work is to compare the microstructure and mechanical properties of Zn coated DP600 AHSS (1·2 mm thick) spot welds conducted using both processes. This was accomplished by examining the metallurgical cross-sections and local hardnesses of various spot weld regions. High speed data acquisition was also used to monitor process parameters and attain energy outputs for each process. Results show a correlation found among microstructure, failure loads, energy requirements and bonded area for both spot welding processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号