首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1692篇
  免费   10篇
  国内免费   27篇
电工技术   6篇
综合类   27篇
化学工业   714篇
金属工艺   50篇
机械仪表   5篇
建筑科学   51篇
矿业工程   9篇
能源动力   492篇
轻工业   1篇
水利工程   6篇
石油天然气   3篇
无线电   67篇
一般工业技术   270篇
冶金工业   23篇
原子能技术   4篇
自动化技术   1篇
  2024年   8篇
  2023年   78篇
  2022年   122篇
  2021年   130篇
  2020年   105篇
  2019年   102篇
  2018年   79篇
  2017年   74篇
  2016年   42篇
  2015年   34篇
  2014年   85篇
  2013年   65篇
  2012年   57篇
  2011年   134篇
  2010年   75篇
  2009年   105篇
  2008年   87篇
  2007年   98篇
  2006年   54篇
  2005年   46篇
  2004年   46篇
  2003年   32篇
  2002年   23篇
  2001年   18篇
  2000年   7篇
  1999年   5篇
  1998年   10篇
  1995年   1篇
  1994年   2篇
  1990年   4篇
  1989年   1篇
排序方式: 共有1729条查询结果,搜索用时 15 毫秒
11.
Amphiphilic TiO2 nanotube arrays (TiO2 NTs) were fabricated through electrochemical oxidation of Ti in solution containing H3PO4 and NaF. Scanning electron microscopic analysis shows that the as-prepared TiO2 NTs have an average pore diameter of 100 nm and a wall thickness of 15 nm. The electrochemical oxidation of Ti can be divided into four stages. In the first stage, when the potential is very low, oxygen formation and Ti dissolution are the major reactions. The second stage corresponds to a slightly higher potential, but less than 2.5 V. In this stage, the formation of TiO2 film occurs. When the potential is increased to the even higher range from 2.5 V to 6 V, the TiO2 film dissolves and nanoporous surface structure is generated. This is the third stage. Further increase of the potential enters stage four. The high potentials cause the self-organization of the nanostructure and allow the formation of well-aligned TiO2 NTs. We also found that the change in surface condition of Ti by annealing heat treatment affects the film dissolution kinetics. As compared with TiO2 thin film, the TiO2 NTs show higher photocatalytic activity on decomposing Rhodamine B. The surface of the TiO2 NTs can be wetted by both water and oil. Such an amphiphilic property comes from the capillary effect of the nanochannel structure of the TiO2 NTs. Because of the amphiphilic property and the photocatalytic activity, we conclude that the TiO2 NTs have the capability of self-cleaning.  相似文献   
12.
Polyaniline is a typical conducting polymer with high migration electron rate, good stability, eco-friendly properties, and high absorption coefficients for visible light. In the present study, polyaniline decorated Pt@TiO2 for visible light-driven H2 generation is reported for the first time. The above-mentioned nanocomposite is prepared through a simple oxidative-polymerization and characterized by infrared spectroscopy, transmission electron microscopy, X–ray diffraction, thermogravimetric analysis, and ultraviolet–visible diffuse reflectance spectra. Polyaniline modification improves the absorption of the nanocomposite in visible light region via a photosensitization effect similar to dye–sensitization but does not influence the crystal structure and size of Pt@TiO2. The polyaniline modified Pt@TiO2 exhibits a remarkable visible light activity (61.8 μmol h−1 g−1) and good stability for H2 generation (with an average apparent quantum yield of 10.1%) with thioglycolic acid as an electron donor. This work provides new insights into using conducting polymers, including polyaniline, as a sensitizer to modify Pt@TiO2 for visible-light hydrogen generation.  相似文献   
13.
光催化技术是解决现今环境污染和能源危机的重要手段之一,然而大部分催化剂的光催化效率较低,提高光生电荷的分离是提高光催化效率的一种有效方法.首先对催化剂的光催化原理进行了概述;结合近年来国内外在提高光生电荷分离效率方面取得的最新成果及进展,从内建电场的产生机理入手,综述了半导体p-n结、异相结、极化表面和铁电材料极化对光...  相似文献   
14.
Metal oxide mesocrystals (MCs) and mesoporous single crystals (MSCs) exhibit superior carrier transport ability,high specific surface area,shortened photo-carrier diffusion lengths to interfaces and enhanced absorbance of the incident sunlight.These advanced features make metal oxide MCs and MSCs be a promising candidate material in photocatalysis,photoelectrocatalysis,dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs).Recently,remarkable advances of applying metal oxide MCs and MSCs in these areas have been achieved.Therefore,it is extremely important to deeply understand the influence of the unique properties of metal oxide MCs and MSCs on solar energy conversion systems.Herein,we presented a brief introduction on the synthesis and carrier transfer behavior of metal oxide MCs and MSCs.Then,the rational structure design and modification of metal oxide MCs and MSCs for photocatalysis,photoelectrocatalysis,DSSCs and PSCs are systematically discussed.Finally,the perspectives on extending the application of metal oxide MCs and MSCs are addressed.  相似文献   
15.
Three dimensional TiO2–Au cross-nanoporous structure (3D TiO2–Au CNS) as an efficient photoelectrocatalytic system was fabricated using superaligned carbon nanotube films as etching masks and electron-beam evaporation. The 3D TiO2–Au CNS exhibited a broad absorption band in the visible region, and the incident photon-to-current conversion efficiency of 3D TiO2–Au CNS/Ti electrode was 3–4 times higher than that of pure TiO2 electrode. The photocurrent density of the 3D TiO2–Au CNS device was 0.079 mA cm−2 at 0 V vs. Ag/AgCl with a solar irradiance of 100 mW cm−2. This developed preparation method was simple, of high flexibility and can be adopted for mass production due to its low cost and good compatibility with other processing technologies. The 3D TiO2–Au CNS and its preparation method have important value in design of photoelectrocatalytic system for research and practical applications, which may have a potential utility in photocatalytic and other photoelectrocatalytic reactions.  相似文献   
16.
光催化技术在水处理领域的应用,既可以提高水质安全,也可以缓解全球能源和水资源短缺问题,是一项具有广泛应用前景的技术。本文首先介绍了光催化技术的基本原理及常用光催化剂的特点,综述了光催化剂技术在饮用水和废水处理应用方面的研究进展及发展方向,重点介绍了光催化技术在饮用水中的除嗅、消毒,在染料废水、含油废水、制药废水、催化还原重金属离子、养殖废水、焦化废水方面的应用,为类似污染水质的处理提供了的参考依据,最后对光催化技术及光催化剂的发展进行了展望。  相似文献   
17.
A new type of graphene-based nanohybrid was prepared from graphene nanosheets and 4-(diphenylamino)benzaldehyde (TPA-CHO) through 1,3-dipolar cycloaddition. The nanohybrid was modified by platinum nanoparticles via photodeposition. The nanohybrid and its Pt modified nanocomposite were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ultraviolet–visible absorption (UV–vis), Fourier transform infrared (FTIR), and Raman spectra confirmed that triphenylamine moiety grafted on the graphene surface. The results of fluorescence quenching and photocurrent enhancement of the triphenylamine-functionalized graphene revealed that photoinduced electron transfer from triphenylamine moiety to the graphene sheet. The investigation of using the Pt modified graphene-based nanocomposite as a photocatalyst for H2 evolution showed that under UV–vis light irradiation, the average H2 evolution rate and the quantum efficiency is 2.3 μmol h−1 and 0.45% mol E−1, respectively. This work demonstrated a potential application of an organic sensitizer covalently functionalized graphene as a novel photocatalyst in the field of solar energy conversion.  相似文献   
18.
Solar driven semiconductor photocatalytic water splitting to produce hydrogen is an extremely charming process by storing photon energy in chemical bonds. In the present study, composite semiconductor TiO2/CdS was structured into uniform and porous double-shelled hollow sphere with cocatalyst platinum selectively loaded onto the internal wall. The SEM, TEM, STEM, XRD, BET and EDS elemental distribution etc. were employed to evidence the formation of the targeted photocatalyst. It was demonstrated that the material has a high efficiency of visible-light-driven hydrogen evolution (296 μmol·h−1/10 mg) with an apparent quantum efficiency (QE) of 14.5% at wavelength of 420 nm. Comparative experiment analysis and time-resolved infrared absorption study suggested that the high photocatalytic activity of the catalyst is attributed to the vectorial electron transfer (CdS → TiO2 → Pt) and the spatial separation of reduction and oxidation active surfaces achieved by the special morphology.  相似文献   
19.
The multifunctional potential of a catalyst previously synthesised for thermal processes is explored by investigating its activity for photocatalytic production of H2 from glycerol, a by-product from the manufacture of bio-diesel. The studied catalyst contains TiO2 doped with Al2O3 that was derived from aluminum foil waste. This catalyst showed higher photocatalytic activity than the analogous catalyst prepared with a commercial Al2O3. Pt and Pd act as electron traps while the Al2O3 demonstrated a promotional effect, partially through proton donation. Under optimum conditions, a steady-state of 4.2 mmol H2 gTiO2−1 hr−1 was produced, which is comparable to the 4.7 mmol H2 gTiO2−1 hr−1 obtained with Pt–TiO2, which is a standard photocatalytic material. It should be noted that the reported Pt/Pd/TiO2-ANFL catalyst has not yet been optimised and so this result is encouraging. It is hoped that these findings can inspire more sustainable and less expensive hydrogen production, including from biomass feedstocks such as glycerol.  相似文献   
20.
An intervening barrier for photocatalytic water decomposition and pollutant degradation is the frustratingly quick recombination of e - h+ pairs. Delicate design of heterojunction photocatalysts by coupling the semiconductors at nanoscale with well-matched geometrical and electronic alignments is an effective strategy to ameliorate the charge separation. Here a facile and environment-friendly l-cysteine-assisted hydrothermal process under weakly alkaline conditions is demonstrated for the first time to fabricate ZnIn2S4/In(OH)3 hollow microspheres with intimate contact, which are verified by XRD, SEM, (HR)TEM, XPS, N2 adsorption-desorption, UV–Vis DRS and photoluminescence spectra. ZnIn2S4/In(OH)3 heterostructure (L-cys/Zn2+ = 4, molar ratio) with a band-gap of 2.50 eV, demonstrates the best photocatalytic performance for water reduction and MB degradation under visible light, outperforming its counterparts (In(OH)3 and ZnIn2S4). The excellent activity of ZnIn2S4/In(OH)3 heterostructure arises from the intercrossed band-edge positions as well as the unique hollow structure with large surface area and wide pore-size distribution, which are beneficial for the efficient charge migration from bulk to surface as well as at the interface between ZnIn2S4 and In(OH)3. This work provides an efficient and eco-friendly strategy for one-pot synthesis of heterostructured composites with intimate contact for photocatalytic application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号