首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3029篇
  免费   19篇
  国内免费   62篇
电工技术   21篇
综合类   18篇
化学工业   1735篇
金属工艺   321篇
机械仪表   57篇
建筑科学   7篇
矿业工程   47篇
能源动力   122篇
轻工业   1篇
石油天然气   3篇
武器工业   1篇
无线电   62篇
一般工业技术   492篇
冶金工业   199篇
原子能技术   6篇
自动化技术   18篇
  2024年   1篇
  2023年   89篇
  2022年   112篇
  2021年   127篇
  2020年   111篇
  2019年   116篇
  2018年   148篇
  2017年   154篇
  2016年   121篇
  2015年   58篇
  2014年   135篇
  2013年   212篇
  2012年   146篇
  2011年   334篇
  2010年   122篇
  2009年   169篇
  2008年   155篇
  2007年   127篇
  2006年   112篇
  2005年   77篇
  2004年   80篇
  2003年   73篇
  2002年   53篇
  2001年   56篇
  2000年   31篇
  1999年   37篇
  1998年   38篇
  1997年   24篇
  1996年   23篇
  1995年   25篇
  1994年   16篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有3110条查询结果,搜索用时 15 毫秒
101.
102.
通过多年的试验研究,发现烧结机台车起拱是由台车过剩力矩所引起,提出了一种利用液压阻力矩方法及装置自动消除烧结机尾部台车过剩力矩的理论。依据该理论所设计的烧结机消除了台车起拱,因而避免了台车磨损,减少了漏风率。  相似文献   
103.
Sintering neck is a featured microstructure that may have significant effect on the sintering behaviour of air-plasma-sprayed thermal barrier coating system (APS TBCs). Based on experimental observations, a multi-necking wedge-shaped model for the sintering of APS TBCs was proposed by considering the sintering stress as surface tension and by employing the thermal-elasto-viscoplastic constitutive relation. Deformation pattern, stress distribution, sintering induced shrinkage, stiffening behaviour and temperature field were analysed by using finite element method. It is shown that the formation of sintering neck significantly affects thermal and mechanical properties related to sintering. Mechanisms of thermal and mechanical degradation induced by sintering were further elucidated.  相似文献   
104.
介绍韶冶在氧化物料对工厂生产经营和现场环境造成不利影响的条件下,通过设备、工艺两方面的研究,提高氧化物料处理能力,从而增强烧结工艺对原料的适应性,使干精矿含硫降低,烧结机产能大幅度提升,烧结块质量保持较高水平,年创效益约2 500万元。  相似文献   
105.
Low temperature water–gas shift (WGS) reaction has been carried out at the gas hourly space velocity of 72,152 h−1 over Cu–CeO2 catalyst prepared by a co-precipitation method. Cu loading was optimized to obtain highly active co-precipitated Cu–CeO2 catalysts for low temperature WGS. 80 wt% Cu–CeO2 exhibited the highest CO conversion as well as the most stable activity (XCO > 46% at 240 °C for 100 h). The excellent catalytic performance is mainly due to a strong metal to support interaction, resulting in the prevention of Cu sintering.  相似文献   
106.
《Ceramics International》2016,42(8):9844-9850
Materials designed in the high-alumina region of Al2O3–MgO–CaO system have been widely used in many technological fields. However, their further applications are limited by the high sintering temperatures necessary to achieve densification due to the poor sintering ability of calcium hexaluminate (CaAl12O19) and spinel (MgAl2O4). Considering this aspect, the present work investigated the effect of TiO2 addition on the sintering densification and mechanical properties of MgAl2O4–CaAl4O7–CaAl12O19 composite by solid state reaction sintering. The results showed that the CA6 grains presented a more equiaxed morphology instead of platelet structure by incorporating Ti4+ into its structure, which greatly improved the densification after heating at 1600 °C. The flexural strength was greatly enhanced with increasing addition of TiO2 due to the significant decrease in porosity and improvement in uniformity of grain size as well as the absence of microcracks in the presence of Al2TiO5. The increased content of TiO2 also played an active role in toughening this composite attributed to the increase in resistance to crack initiation and propagation.  相似文献   
107.
Bi3.25La0.75−xErxTi3O12 and Bi3.25La0.75Ti3−xErxO12−δ ceramics were prepared and studied in this work in terms of dopant-induced phase and microstructure development as well as dielectric response. The results show that introduction of Er3+ tends to reduce the materials’ sintering temperature and average grain size. Moreover, it was noted that in these systems the substitution site of this dopant is controlled by valence state and ionic radii mismatch effects. In particular, even when a nominal substitution of Ti4+ is conceived, here it is found that Er3+ also incorporates at the (Bi,La)3+ sites. These and other interesting concluding remarks from this work, including Er3+ tolerance, were possible only after comparing, especially, the X-ray diffraction results and the intrinsic ferroelectric characteristics extracted from the dielectric measurements.  相似文献   
108.
Half-Heusler (HH) semiconductor alloys are being widely investigated due to their promising potential for thermoelectric (TE) power generation applications. Sb is an effective doping element for n-type ZrNiSn half-Heuslers alloys. HH thermoelectric materials Hf0.25Zr0.75NiSn1−xSbx (0 ≤ x ≤ 0.03) were synthesized by induction melting combined with plasma activated sintering (PAS) technique. X-ray diffraction concluded that single-phase HH compounds without compositional segregations were obtained. Presence of bended lamellar structures was revealed by the FESEM. Sb doping significantly enhanced the electrical conductivity, power factor and carrier concentration of the alloys. An increase in the carrier mobility was also observed. Consequently, optimum values of 4.36 × 10−3 W/mK2 and 4.7 × 1020 cm−3 were achieved for power factor and carrier concentration, respectively. As a result, a ZT value of 0.83 at 923 K was obtained which is about 67% improvement compared to the un-doped sample.  相似文献   
109.
《Ceramics International》2017,43(10):7728-7735
The plasma spray method is widely used to produce NiO-8YSZ (composed of nickel oxide (NiO) and 8 mol% yttria-stabilized zirconia) anode layers in metal-supported solid oxide fuel cell (SOFC). Flowability control of microsized particles is important for achieving consistent performance of the SOFC anode layer. When microsized particles are fabricated via spray drying and sintering, the most significant factors that influence flowability are their sizes, distribution, and surface conditions. Thus, the aim of this study is to analyze the fabrication conditions for microsized NiO-8YSZ cermet particles made from a nanoscale, sinterable NiO-8YSZ dispersion solution by using an appropriate spray-drying and sintering process. The characteristics of the as-sprayed and sintered NiO-8YSZ composite particles (such as size, distribution, roughness, and nanostructure) were analyzed via field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), particle size distribution (PSD), Brunauer–Emmett–Teller (BET) surface area, and atomic force microscopy (AFM). The as-sprayed microsized NiO-8YSZ particles became smaller and more uniformly distributed as the rotational speed used for spray drying increased. As a result of sintering, the extent of shrinkage of as-sprayed microsized NiO-8YSZ particles generated at high RPMs was lower than that of particles formed at low RPMs. No significant difference was observed in the distribution of the nanosized NiO and 8YSZ particles at different rotational speeds. Furthermore, the highest BET surface areas were observed for particles generated at 8000 RPM before sintering at 13.74 m2/g. After sintering, the highest BET surface area was 0.94 m2/g for particles generated at 16,000 RPM. Differences in nanostructure and surface roughness between as-sprayed and sintered microsized NiO-8YSZ particles were identified via AFM. This study is expected to provide important fundamental information useful for optimizing SOFC efficiency by promoting flowability control during the production of SOFC anodes via plasma spraying.  相似文献   
110.
《Microelectronics Reliability》2014,54(9-10):1867-1871
Power cycle reliability of Cu nanoparticle joint has been studied for high temperature operation of power devices. Al2O3 heater chips and Cu–65 wt% Mo baseplates were joined by Cu nanoparticles and Sn–0.7Cu and power cycle tests of 65/200 °C and 65/250 °C were carried out on the joints. The Cu nanoparticles were prepared by reducing Cu carbonate in ethylene glycol with dodecanoic acid + dodecyl amine (C12) and decanoic acid and decyl amine (C10) as capping agents. A power cycle test of 65/200 °C did not inflict severe damage on the Cu nanoparticle joints so that there were not many cracks formed after 3000 cycles. Vertical cracks were formed in the C12 Cu nanoparticle joint after 3000 cycles of 65/250 °C test, however the maximum temperature during the power cycle test did not change at all because vertical cracks did not have an effect on preventing heat flow. On the contrary, lateral cracks were completely formed in the Sn–0.7Cu soldered joint after 200 cycles of 65/200 °C test and in the C10 Cu nanoparticle joint after 360 cycles of 65/250 °C test. In these experiments, the maximum temperatures were rapidly increased because heat conduction was prevented across the formed lateral cracks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号