首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   0篇
  国内免费   1篇
电工技术   1篇
化学工业   36篇
金属工艺   73篇
机械仪表   34篇
能源动力   4篇
轻工业   11篇
一般工业技术   47篇
冶金工业   23篇
  2020年   1篇
  2013年   223篇
  2004年   1篇
  1999年   1篇
  1998年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有229条查询结果,搜索用时 15 毫秒
161.
Abstract

Under the subject of this study, it was found that the growth of graphite in eutectic solidification is the most important factor. Also, shrinkage cavity increases in hypereutectic composition because the crystallisation volume of graphite in eutectic solidification becomes smaller. In addition, the Al amount contained in spheroidal agent or molten metal works negatively for shrinkage cavity, which could be said the same for P, Mo and Cr. As for the shrinkage cavity in non-alloyed ductile iron, the metal supply resistance P MSR is the most significant element in regard to the occurrence of shrinkage cavity. For tight mould, there is no relationship between modulus and shrinkage cavity while the P MSR of a product is the dominant factor. This theory of P MSR can be applied to final solidification loops of products based on simulation. Based on this, it became possible to make shrinkage cavity free products without a riser.  相似文献   
162.
Abstract

This study intended to establish the optimal heat treatment conditions for the desired hardness and wear resistance property for the bimetal hammers developed by the authors. The objective of this study is to attain bimetal hammers that have a tough Cr–Ni alloyed steel shank and a high wear resistant high Cr cast iron head to replace conventional single alloy (high Mn steel) hammers. The results show that the optimal heat treatment condition obtained for the bimetal hammers is: destabilisation: 1000–1050°C for 2 h, quench: FAC and tempering: 480–500°C for 6 h. By employing this optimal heat treatment condition, the highest hardness value can be attained along with the best wear resistance property for the head portion and acceptable toughness for the shank portion. The microstructure of the head portion that corresponds to the optimal properties consists of eutectic M7C3 carbides, secondary M7C3 carbides, tempered martensite and almost nil retained austenite.  相似文献   
163.
Abstract

In the present investigation, a nickel based hardfacing alloy (AWS NiCr–B) was deposited on an austenitic stainless steel substrate 316LN using the plasma transferred arc welding process. The deposit was characterised by hardness measurements, microstructural examination and sliding wear assessment. Identification of precipitates was carried out using X-ray diffraction and SEM/EDAX. These studies revealed the presence of chromium rich carbides and borides in a γ-Ni matrix. Down to a distance of 1 mm from the interface, the hardness of the deposit was found to be 52 HRC. The sliding wear behaviour of the hardfacing alloy was investigated in air in the room temperature to 550°C range, with a pin on disk configuration using a cylindrical pin with tip radius of 3 mm under loads of 30, 40 and 50 N. Wear experiments were conducted up to a sliding distance of 180 m at a sliding speed of 0·1 m s?1. The elastic modulus and Poisson's ratio of the hardfaced deposits were evaluated by the ultrasonic method and these values were used for calculating initial Hertzian contact stress. The study showed that, while significant wear loss occurred at room temperature, there was practically no measurable weight loss at temperatures of 300 and 550°C. This could be attributed to the formation of an oxide layer at the surface during wear testing.  相似文献   
164.
Abstract

The addition of copper increases the strength of aluminium, but decreases the localised corrosion resistance of the metal to seawater as the copper containing intermetallics exhibit different electrochemical properties from the matrix. The main requirement of corrosion resistance could be met through the surface modification by removing the copper rich phase. The present work involves investigations of the influence of prior copper removal treatment on the pitting and general corrosion resistance of AA2219 alloy containing a high copper content in different initial thermal tempers. Significant improvement in the pitting and general corrosion resistance after surface copper removal treatment was evident from the results of electrochemical polarisation and the impedance tests. Attempts were also was made to modify the surface further, with a conversion layer of cerium as an alternative to the chromate coating.  相似文献   
165.
Abstract

The alloying behaviour, microstructure, and high temperature mechanical properties of quaternary polycrystalline Ni3 (Si,Ti), which was alloyed with transition elements V, Nb, Zr, and Hf beyond their maximum solubility limits, were investigated. The solubility limits of the quaternary elements in the L12 Ni3 (Si,Ti) phase were determined to be ranked in the sequence of Nb > V > Hf > Zr, and correlated with the size misfit parameter between Si and the quaternary element X, and with the difference in formation enthalpy between Ni3 Si and Ni3 X. The second phases (dispersions) formed beyond the solubility limit were identified as a face centred cubic type Ni solid solution for the V containing Ni3 (Si,Ti) alloy and Ni3 X type compounds of the Nb, Zr, and Hf containing Ni3 (Si,Ti) alloys. The second phase dispersions in the L12 phase matrix resulted in strengthening over a wide range of temperatures. The high temperature tensile elongation was improved by the introduction of the second phase dispersions. Among the quaternary Ni3 (Si,Ti) alloys observed in the present study, the Nb containing Ni3 (Si,Ti) alloy with the Nb containing second phase dispersion was shown to have the most favourable mechanical properties.  相似文献   
166.
Abstract

Ductile iron is a commonly used structural material. However the unsatisfactory fatigue performance has limited its application for some dynamic loads. Shot peening is a mechanical surface modification process to extend the fatigue life of materials. Results of the influence of the shot peening treatment on ductile iron castings with as-cast surface and machined surface are presented. The results showed that shot peening ductile iron castings could double the fatigue life for an as-cast surface and quadruple the fatigue life for a machined surface. It is believed that shot peening affects fatigue life through the retardation of crack nucleation and growth as a result of the introduction of work hardening, the existence of compressive stresses on the surface layer, and the removal of the surface irregularities of the ductile iron castings.  相似文献   
167.
Abstract

The kinetics of bainitic transformation was studied in unalloyed and 1%Mn alloyed ductile irons. The samples were subjected to different austempering heat treatment cycles in dilatometry equipment. The results showed the effect of Mn on delaying the start and end of bainitic transformation, supposedly because of Mn segregation to the primary austenite grain boundaries. Decreasing austempering temperature led to precipitation of carbides inside the lower bainitic ferrite plates and therefore, more dilatation during the bainitic reaction. The dilatometric results were also used to calculate n and k in the Johnson-Mehl-Avrami equation and to derive the time-temperature-transformation diagrams. X-ray results were used to calculate the quantitative amount of precipitated carbides within lower bainitic ferrite and the dilatation during austempering.  相似文献   
168.
《粉末冶金学》2013,56(2):161-164
Abstract

The effect of Mg on the sintering phenomenon of aluminium alloy powder particles has been examined using XPS analysis of the chemical reaction at the top most surface of the particle during heating. The relative density of the sintered material increases by 9% according to the increase of Mg content. The mechanical properties of the sintered material also increase remarkably as the Mg content in the particle increases. The ratio of the dimple patterns observed at the fractured surface after the tensile test also increases. It is considered that Mg acts to deoxidise the Al2O3 film that covers the particle surface as a barrier and helps sintering between the particles.  相似文献   
169.
《粉末冶金学》2013,56(4):334-344
Abstract

The wear and wear corrosion resistance of Al–20Si–XPb–YCu (X=0–10 wt-%, Y=0–3 wt-%) alloys fabricated using powder metallurgy technique and subsequent heat treatments were evaluated using a block on ring tribotest. The microstructures of all aluminium alloys were observed using an optical microscope, a scanning electron microscope and an X-ray energy dispersive spectroscope. The evaluation studied the effects of applied potential and environments of dry air and 3·5 wt-%NaCl aqueous solution. The microstructural analysis showed that Pb was bimodally distributed in Pb containing alloys, and Cu particles formed the intermetallic phase CuAl2. Additionally, the hardness of both Pb and Cu containing alloys increased significantly. The wear and corrosion results showed that the addition of both lead (Pb) and copper (Cu) increased the wear resistance and the corrosion rate, while heat treatments reduced the corrosion rate of most alloys except the Al–Si alloy. Furthermore, comparison of all alloys following heat treatment shows that the wear corrosion resistance of Al–Si alloy is inferior to that of the other alloys. Therefore, addition of Pb and Cu further improved the wear corrosion resistance. Additionally, at anodic potential, the wear corrosion rate and current density of both Al–Si and Al–Si–Cu alloys containing particle Pb were significantly lower than those of alloys containing no Pb, because the layer produced by corrosion comprised Al, O and Pb elements.  相似文献   
170.
《粉末冶金学》2013,56(2):112-117
Abstract

Gas and water atomised 316L stainless steel powders with similar powder morphology and particle size were injection moulded and sintered. The results show that compacts prepared from the gas atomised powder exhibit higher density and tensile strength, whereas those prepared from the water atomised powder exhibit higher elongation, finer grain size and superior corrosion resistance. Chemical analysis shows that the water atomised powder has a higher Si and O content, and microstructural analysis of the sintered compacts reveals that SiO2 particles disperse as a second phase in the compacts prepared from the atomised powder, which accounts for the property behaviour. Due to the presence of SiO2, the porosity increases, whereas the pore coarsening and grain growth are inhibited. Besides, SiO2 particles can also improve the passivation effect of stainless steel, and hence increase the corrosion resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号