首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6068篇
  免费   1102篇
  国内免费   271篇
电工技术   6篇
技术理论   1篇
综合类   118篇
化学工业   3648篇
金属工艺   198篇
机械仪表   100篇
建筑科学   37篇
矿业工程   13篇
能源动力   5篇
轻工业   651篇
水利工程   3篇
石油天然气   14篇
武器工业   3篇
无线电   456篇
一般工业技术   1565篇
冶金工业   431篇
原子能技术   17篇
自动化技术   175篇
  2024年   28篇
  2023年   180篇
  2022年   359篇
  2021年   662篇
  2020年   336篇
  2019年   366篇
  2018年   354篇
  2017年   321篇
  2016年   350篇
  2015年   401篇
  2014年   436篇
  2013年   644篇
  2012年   418篇
  2011年   359篇
  2010年   320篇
  2009年   308篇
  2008年   226篇
  2007年   267篇
  2006年   212篇
  2005年   196篇
  2004年   163篇
  2003年   124篇
  2002年   118篇
  2001年   64篇
  2000年   34篇
  1999年   40篇
  1998年   25篇
  1997年   19篇
  1996年   9篇
  1995年   13篇
  1994年   6篇
  1993年   5篇
  1992年   12篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   7篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1980年   2篇
  1974年   2篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1964年   2篇
  1955年   1篇
  1951年   1篇
排序方式: 共有7441条查询结果,搜索用时 156 毫秒
91.
计算机辅助药物设计(CADD)是在计算机技术、分子药理学和分子生物学等多学科交叉发展的基础上形成的药物研发新技术,它的快速发展,极大地减少了新药创制的盲目性和偶然性。该文在介绍了CADD原理、方法及策略的基础上,对CADD在新药研发中的应用进展进行了回顾,并对其存在问题和应用前景进行了展望。  相似文献   
92.
DDGrid:一种大规模药物虚拟筛选网格   总被引:2,自引:0,他引:2  
化合物活性筛选是创新药物研究的起点和具有决定意义的步骤,利用网格计算技术进行药物虚拟筛选能够极大提高药物筛选的有效性,同时可以大量减少新药研制的成本和时间。新药研发网格DDGrid是中国国家网格CNGrid的重要支持项目,通过实施主从模式架构并在网格资源监控中使用适配器模式,DDGrid可以对超过10万规模的化合物分子数据库进行虚拟筛选。  相似文献   
93.
Dissolving microneedle (DMN) is an attractive alternative to parenteral and enteral drug administration owing to its painless self-administration and safety due to non-generation of medical waste. For reproducible and efficient DMN administration, various DMN application methods, such as weights, springs, and electromagnetic devices, have been studied. However, these applicators have complex structures that are complicated to use and high production costs. In this study, a latch applicator that consists of only simple plastic parts and operates via thumb force without any external complex device is developed. Protrusion-shaped latches and impact distances are designed to accumulate thumb force energy through elastic deformation and to control impact velocity. The optimized latch applicator with a pressing force of 25 N and an impact velocity of 5.9 m s−1 fully inserts the drug-loaded tip of the two-layered DMN into the skin. In an ovalbumin immunization test, DMN with the latch applicator shows a significantly higher IgG antibody production rate than that of intramuscular injection. The latch applicator, which provides effective DMN insertion and a competitive price compared with conventional syringes, has great potential to improve delivery of drugs, including vaccines.  相似文献   
94.
Compared to conventional photothermal therapy (PTT) which requires hyperthermia higher than 50 °C, mild-temperature PTT is a more promising antitumor strategy with much lower phototoxicity to neighboring normal tissues. However, the therapeutic efficacy of mild-temperature PTT is always restricted by the thermoresistance of cancer cells. To address this issue, a supramolecular drug nanocarrier is fabricated to co-deliver nitric oxide (NO) and photothermal agent DCTBT with NIR-II aggregation-induced emission (AIE) characteristic for mild-temperature PTT. NO can be effectively released from the nanocarriers in intracellular reductive environment and DCTBT is capable of simultaneously producing reactive oxygen species (ROS) and hyperthermia upon 808 nm laser irradiation. The generated ROS can further react with NO to produce peroxynitrite (ONOOˉ) bearing strong oxidization and nitration capability. ONOOˉ can inhibit the expression of heat shock proteins (HSP) to reduce the thermoresistance of cancer cells, which is necessary to achieve excellent therapeutic efficacy of DCTBT-based PTT at mild temperature (<50 °C). The antitumor performance of ONOOˉ-potentiated mild-temperature PTT is validated on subcutaneous and orthotopic hepatocellular carcinoma (HCC) models. This research puts forward an innovative strategy to overcome thermoresistance for mild-temperature PTT, which provides new inspirations to explore ONOOˉ-sensitized tumor therapy strategies.  相似文献   
95.
Herein, a facile, controllable, and versatile method is reported to prepare monodisperse yolk-shell and yolk-multishell silica nanoparticles (NPs) with mesoporous shells by a novel selective etching strategy. The mechanism of selective etching based on fluoride-silica chemistry is investigated in detail and thus provides a fundamentally novel principle for the fabrication of yolk-shell NPs. Specifically, this unprecedented and versatile synthesis strategy can be used to encapsulate essentially any silica-based, carbon-based, metal, metal oxide, or other possible NPs. Noteworthy is that most of the yolk-shell mesoporous silica (mSiO2) NPs are prepared for the first time. To demonstrate the major structural and compositional advantages of the designed yolk-shell NPs, their applications in the fields of ultralow-dielectric constant (k) materials, drug delivery systems, and catalysts were explored. In detail, the lowest k value of the prepared yolk-shellordered mesoporous silica@mSiO2/fluorinated polybenzoxazole composite films is 2.02; The obtained yolk-shell mSiO2/C@mSiO2/C NPs possess high hydrophilicity and pH-responsive sensitivity; The conversion of the catalytic reaction of the designed magnetic yolk-shell hollow Fe3O4@SiO2/Au@mSiO2 NPs at 20 min is 97% with a high conversion rate (92%) and recyclability even after 10 reuses. This innovative work lays a solid foundation for freely tailorable yolk-shell encapsulation and will greatly stimulate more efforts devoted to relevant research and development.  相似文献   
96.
Combining chemotherapy and radiotherapy (chemoradiotherapy) has been widely applied in many clinical practices, showing promises in enhancing therapeutic outcomes. Nontoxic nanocarriers that not only are able to deliver chemotherapeutics into tumors, but could also act as radiosensitizers to enhance radiotherapy would thus be of great interest in the development of chemoradiotherapies. To achieve this aim, herein mesoporous tantalum oxide (mTa2O5) nanoparticles with polyethylene glycol (PEG) modification are fabricated. Those mTa2O5‐PEG nanoparticles could serve as a drug delivery vehicle to allow efficient loading of chemotherapeutics such as doxorubicin (DOX), whose release appears to be pH responsive. Meanwhile, owing to the interaction of Ta with X‐ray, mTa2O5‐PEG nanoparticles could offer an intrinsic radiosensitization effect to increase X‐ray‐induced DNA damages during radiotherapy. As a result, DOX‐loaded mTa2O5‐PEG (mTa2O5‐PEG/DOX) nanoparticles can offer a strong synergistic therapeutic effect during the combined chemoradiotherapy. Furthermore, in chemoradiotherapy, such mTa2O5‐PEG/DOX shows remarkably reduced side effects compared to free DOX, which at the same dose appears to be lethal to animals. This work thus presents a new type of mesoporous nanocarrier particularly useful for the delivery of safe and effective chemoradiotherapy.  相似文献   
97.
Strategically fabricated theranostic nanocarrier delivery system is an unmet need in personalized medicine. Herein, this study reports a versatile folate receptor (FR) targeted nanoenvelope delivery system (TNEDS) fabricated with gold core silica shell followed by chitosan–folic acid conjugate surface functionalization by for precise loading of doxorubicin (Dox), resembled as Au@SiO2‐Dox‐CS‐FA. TNEDS possesses up to 90% Dox loading efficiency and internalized through endocytosis pathway leading to pH and redox‐sensitive release kinetics. The superior FR‐targeted cytotoxicity is evaluated by the nanocarrier in comparison with US Food and Drug Administration (FDA)‐approved liposomal Dox conjugate, Lipodox. Moreover, TNEDS exhibits theranostic features through caspase‐mediated apoptosis and envisages high surface plasmon resonance enabling the nanoconstruct as a promising surface enhanced Raman scattering (SERS) nanotag. Minuscule changes in the biochemical components inside cells exerted by the TNEDS along with the Dox release are evaluated explicitly in a time‐dependent fashion using bimodal SERS/fluorescence nanoprobe. Finally, TNEDS displays superior antitumor response in FR‐positive ascites as well as solid tumor syngraft mouse models. Therefore, this futuristic TNEDS is expected to be a potential alternative as a clinically relevant theranostic nanomedicine to effectively combat neoplasia.  相似文献   
98.
Responsive nanomaterials have emerged as promising candidates as drug delivery vehicles in order to address biomedical diseases such as cancer. In this work, polymer‐based responsive nanoparticles prepared by a supramolecular approach are loaded with doxorubicin (DOX) for the cancer therapy. The nanoparticles contain disulfide bonds within the polymer network, allowing the release of the DOX payload in a reducing environment within the endoplasm of cancer cells. In addition, the loaded drug can also be released under acidic environment. In vitro anticancer studies using redox and pH dual responsive nanoparticles show excellent performance in inducing cell death and apoptosis. Zebrafish larvae treated with DOX‐loaded nanoparticles exhibit an improved viability as compared with the cases treated with free DOX by the end of a 3 d treatment. Confocal imaging is utilized to provide the daily assessment of tumor size on zebrafish larva models treated with DOX‐loaded nanoparticles, presenting sustainable reduction of tumor. This work demonstrates the development of functional nanoparticles with dual responsive properties for both in vitro and in vivo drug delivery in the cancer therapy.  相似文献   
99.
There is a pressing need to develop more effective therapeutics to fight cancer. An idyllic chemotherapeutic is expected to overcome drug resistance of tumors and minimize harmful side effects to healthy tissues. Antibody‐functionalized porous silicon nanoparticles loaded with a combination of chemotherapy drug and gold nanoclusters (AuNCs) are developed. These nanocarriers are observed to selectively deliver both payloads, the chemotherapy drug and AuNCs, to human B cells. The accumulation of AuNCs to target cells and subsequent exposure to an external electromagnetic field in the microwave region render them more susceptible to the codelivered drug. This approach represents a targeted two‐stage delivery nanocarrier that benefits from a dual therapeutic action that results in enhanced cytotoxicity.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号