首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10174篇
  免费   1613篇
  国内免费   418篇
电工技术   22篇
技术理论   1篇
综合类   184篇
化学工业   5041篇
金属工艺   270篇
机械仪表   167篇
建筑科学   107篇
矿业工程   17篇
能源动力   6篇
轻工业   835篇
水利工程   3篇
石油天然气   17篇
武器工业   3篇
无线电   1111篇
一般工业技术   2393篇
冶金工业   1556篇
原子能技术   174篇
自动化技术   298篇
  2024年   57篇
  2023年   418篇
  2022年   934篇
  2021年   1192篇
  2020年   578篇
  2019年   586篇
  2018年   517篇
  2017年   490篇
  2016年   507篇
  2015年   548篇
  2014年   611篇
  2013年   782篇
  2012年   532篇
  2011年   562篇
  2010年   503篇
  2009年   482篇
  2008年   370篇
  2007年   407篇
  2006年   349篇
  2005年   364篇
  2004年   272篇
  2003年   231篇
  2002年   217篇
  2001年   134篇
  2000年   61篇
  1999年   56篇
  1998年   47篇
  1997年   43篇
  1996年   24篇
  1995年   23篇
  1994年   16篇
  1993年   30篇
  1992年   35篇
  1991年   10篇
  1990年   22篇
  1989年   29篇
  1988年   23篇
  1987年   11篇
  1986年   17篇
  1985年   7篇
  1984年   13篇
  1979年   5篇
  1974年   4篇
  1966年   8篇
  1965年   6篇
  1964年   11篇
  1963年   4篇
  1961年   4篇
  1959年   4篇
  1955年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Skeletal muscle regeneration is highly dependent on the inflammatory response. A wide variety of innate and adaptive immune cells orchestrate the complex process of muscle repair. This review provides information about the various types of immune cells and biomolecules that have been shown to mediate muscle regeneration following injury and degenerative diseases. Recently developed cell and drug-based immunomodulatory strategies are highlighted. An improved understanding of the immune response to injured and diseased skeletal muscle will be essential for the development of therapeutic strategies.  相似文献   
92.
Despite the existing arsenal of anti-cancer drugs, 10 million people die each year worldwide due to cancers; this highlights the need to discover new therapies based on innovative modes of action against these pathologies. Current chemotherapies are based on the use of cytotoxic agents, targeted drugs, monoclonal antibodies or immunotherapies that are able to reduce or stop the proliferation of cancer cells. However, tumor eradication is often hampered by the presence of resistant cells called cancer stem-like cells or cancer stem cells (CSCs). Several strategies have been proposed to specifically target CSCs such as the use of CSC-specific antibodies, small molecules able to target CSC signaling pathways or drugs able to induce CSC differentiation rendering them sensitive to classical chemotherapy. These latter compounds are the focus of the present review, which aims to report recent advances in anticancer-differentiation strategies. This therapeutic approach was shown to be particularly promising for eradicating tumors in which CSCs are the main reason for therapeutic failure. This general view of the chemistry and mechanism of action of compounds inducing the differentiation of CSCs could be particularly useful for a broad range of researchers working in the field of anticancer therapies as the combination of compounds that induce differentiation with classical chemotherapy could represent a successful approach for future therapeutic applications.  相似文献   
93.
Negatively charged fluorescent carbon dots (CDs, Em=608 nm) were hydrothermally prepared from thiophene phenylpropionic acid polymers and then successfully loaded with the positively charged anticancer cargo coptisine, which suffers from poor bioavailability. The formed CD-coptisine complexes were thoroughly characterized by particle size, morphology, drug loading efficiency, drug release, cellular uptake and cellular toxicity in vitro and antitumor activities in vivo. In this nano-carrier system, red emissive CDs possess multiple advantages as follows: 1) high drug loading efficiency (>96 %); 2) sustained drug release; 3) enhanced drug efficacy towards cancer cells; 4) EPR effect; 5) drug release tracing with near-infrared imaging. These properties indicated that red emissive CDs prepared from polymers could be used as a novel drug delivery system with integrated therapeutic and imaging functions in cancer therapy, which are expected to have great potential in future clinical applications.  相似文献   
94.
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.  相似文献   
95.
Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is causally related to fibrotic diseases, including idiopathic pulmonary fibrosis. The identification of Compounds that interfere with the HSP47-collagen interaction is essential for the development of relevant therapeutics. Herein, we prepared human HSP47 as a soluble fusion protein expressed in E. coli and established an assay system for HSP47 inhibitor screening. We screened a natural and synthetic Compound library established at Nagasaki University. Among 1023 Compounds, 13 exhibited inhibitory activity against human HSP47, of which three inhibited its function in a dose-dependent manner. Epigallocatechin-3-O-gallate, one of these three Compounds, is a typical polyphenol Compound derived from tea leaves. Structurally related Compounds were synthesized and examined for their activity, revealing a hydroxyl group at A-ring position 5 as important for its activity. The present findings provide valuable insight for the development of natural product-derived therapeutics for fibrotic diseases, including idiopathic pulmonary fibrosis.  相似文献   
96.
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.  相似文献   
97.
As widely acknowledged, 40–50% of all melanoma patients harbour an activating BRAF mutation (mostly BRAF V600E). The identification of the RAS–RAF–MEK–ERK (MAP kinase) signalling pathway and its targeting has represented a valuable milestone for the advanced and, more recently, for the completely resected stage III and IV melanoma therapy management. However, despite progress in BRAF-mutant melanoma treatment, the two different approaches approved so far for metastatic disease, immunotherapy and BRAF+MEK inhibitors, allow a 5-year survival of no more than 60%, and most patients relapse during treatment due to acquired mechanisms of resistance. Deep insight into BRAF gene biology is fundamental to describe the acquired resistance mechanisms (primary and secondary) and to understand the molecular pathways that are now being investigated in preclinical and clinical studies with the aim of improving outcomes in BRAF-mutant patients.  相似文献   
98.
Human cytomegalovirus (HCMV) belongs to the β-herpesvirus family, which is transmitted in almost every part of the world and is carried by more than 90% of the general population. Increasing evidence indicates that HCMV infection triggers numerous diseases by disrupting the normal physiological activity of host cells, particularly apoptosis. Apoptosis disorder plays a key role in the initiation and development of multiple diseases. However, the relationship and molecular mechanism of HCMV-related diseases and apoptosis have not yet been systematically summarized. This review aims to summarize the role of apoptosis in HCMV-related diseases and provide an insight into the molecular mechanism of apoptosis induced by HCMV infection. We summarize the literature on HCMV-related diseases and suggest novel strategies for HCMV treatment by regulating apoptosis.  相似文献   
99.
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations of the GLA gene that result in a deficiency of the enzymatic activity of α-galactosidase A and consequent accumulation of glycosphingolipids in body fluids and lysosomes of the cells throughout the body. GB3 accumulation occurs in virtually all cardiac cells (cardiomyocytes, conduction system cells, fibroblasts, and endothelial and smooth muscle vascular cells), ultimately leading to ventricular hypertrophy and fibrosis, heart failure, valve disease, angina, dysrhythmias, cardiac conduction abnormalities, and sudden death. Despite available therapies and supportive treatment, cardiac involvement carries a major prognostic impact, representing the main cause of death in FD. In the last years, knowledge has substantially evolved on the pathophysiological mechanisms leading to cardiac damage, the natural history of cardiac manifestations, the late-onset phenotypes with predominant cardiac involvement, the early markers of cardiac damage, the role of multimodality cardiac imaging on the diagnosis, management and follow-up of Fabry patients, and the cardiac efficacy of available therapies. Herein, we provide a comprehensive and integrated review on the cardiac involvement of FD, at the pathophysiological, anatomopathological, laboratory, imaging, and clinical levels, as well as on the diagnosis and management of cardiac manifestations, their supportive treatment, and the cardiac efficacy of specific therapies, such as enzyme replacement therapy and migalastat.  相似文献   
100.
Peptide-based drugs are an attractive class of therapeutic agents, recently recognized by the pharmaceutical industry. These molecules are currently being used in the development of innovative therapies for diverse health conditions, including tropical diseases such as leishmaniasis. Despite its socioeconomic influence on public health, leishmaniasis remains long-neglected and categorized as a poverty-related disease, with limited treatment options. Peptides with antileishmanial effects encountered to date are a structurally heterogeneous group, which can be found in different natural sources—amphibians, reptiles, insects, bacteria, marine organisms, mammals, plants, and others—or inspired by natural toxins or proteins. This review details the biochemical and structural characteristics of over one hundred peptides and their potential use as molecular frameworks for the design of antileishmanial drug leads. Additionally, we detail the main chemical modifications or substitutions of amino acid residues carried out in the peptide sequence, and their implications in the development of antileishmanial candidates for clinical trials. Our bibliographic research highlights that the action of leishmanicidal peptides has been evaluated mainly using in vitro assays, with a special emphasis on the promastigote stage. In light of these findings, and considering the advances in the successful application of peptides in leishmaniasis chemotherapy, possible approaches and future directions are discussed here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号