全文获取类型
收费全文 | 2206篇 |
免费 | 529篇 |
国内免费 | 166篇 |
专业分类
电工技术 | 89篇 |
综合类 | 84篇 |
化学工业 | 505篇 |
金属工艺 | 113篇 |
机械仪表 | 15篇 |
建筑科学 | 3篇 |
矿业工程 | 28篇 |
能源动力 | 146篇 |
轻工业 | 6篇 |
石油天然气 | 34篇 |
武器工业 | 2篇 |
无线电 | 806篇 |
一般工业技术 | 926篇 |
冶金工业 | 127篇 |
原子能技术 | 9篇 |
自动化技术 | 8篇 |
出版年
2024年 | 28篇 |
2023年 | 261篇 |
2022年 | 101篇 |
2021年 | 239篇 |
2020年 | 250篇 |
2019年 | 281篇 |
2018年 | 218篇 |
2017年 | 210篇 |
2016年 | 162篇 |
2015年 | 93篇 |
2014年 | 66篇 |
2013年 | 62篇 |
2012年 | 61篇 |
2011年 | 77篇 |
2010年 | 67篇 |
2009年 | 64篇 |
2008年 | 56篇 |
2007年 | 97篇 |
2006年 | 94篇 |
2005年 | 74篇 |
2004年 | 74篇 |
2003年 | 41篇 |
2002年 | 41篇 |
2001年 | 25篇 |
2000年 | 43篇 |
1999年 | 20篇 |
1998年 | 12篇 |
1997年 | 16篇 |
1996年 | 14篇 |
1995年 | 14篇 |
1994年 | 16篇 |
1993年 | 5篇 |
1992年 | 7篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1951年 | 3篇 |
排序方式: 共有2901条查询结果,搜索用时 15 毫秒
121.
Sarune Daskeviciute-Geguziene Yi Zhang Kasparas Rakstys Chuanxiao Xiao Jianxing Xia Zhiheng Qiu Maryte Daskeviciene Tomas Paskevicius Vygintas Jankauskas Abdullah M. Asiri Vytautas Getautis Mohammad Khaja Nazeeruddin 《Advanced functional materials》2023,33(1):2208317
In this study, a series of donor–acceptor–donor (D-A-D) type small molecules based on the fluorene and diphenylethenyl enamine units, which are distinguished by different acceptors, as holetransporting materials (HTMs) for perovskite solar cells is presented. The incorporation of the malononitrile acceptor units is found to be beneficial for not only carrier transportation but also defects passivation via Pb–N interactions. The highest power conversion efficiency of over 22% is achieved on cells based on V1359, which is higher than that of spiro-OMeTAD under identical conditions. This st shows that HTMs prepared via simplified synthetic routes are not only a low-cost alternative to spiro-OMeTAD but also outperform in efficiency and stability state-of-art materials obtained via expensive cross-coupling methods. 相似文献
122.
Shuangjie Wang Zhen Li Yuanyuan Zhang Xingrui Liu Jian Han Xuanhua Li Zhike Liu Shengzhong Liu Wallace C. H. Choy 《Advanced functional materials》2019,29(15)
Despite being a promising candidate for next‐generation photovoltaics, perovskite solar cells (PSCs) exhibit limited stability that hinders their practical application. In order to improve the humidity stability of PSCs, herein, a series of ionic liquids (ILs) “1‐alkyl‐4‐amino‐1,2,4‐triazolium” (termed as RATZ; R represents alkyl chain, and ATZ represents 4‐amino‐1,2,4‐triazolium) as cations are designed and used as additives in methylammonium lead iodide (MAPbI3) perovskite precursor solution, obtaining triazolium ILs‐modified PSCs for the first time (termed as MA/RATZ PSCs). As opposed to from traditional methods that seek to improve the stability of PSCs by functionalizing perovskite film with hydrophobic molecules, humidity‐stable perovskite films are prepared by exploiting the self‐assembled monolayer (SAM) formation of water‐soluble triazolium ILs on a hydrophilic perovskite surface. The mechanism is validated by experimental and theoretical calculation. This strategy means that the MA/RATZ devices exhibit good humidity stability, maintaining around 80% initial efficiency for 3500 h under 40 ± 5% relative humidity. Meanwhile, the MA/RATZ PSCs exhibit enhanced thermal stability and photostability. Tuning the molecule structure of the ILs additives achieves a maximum power conversion efficiency (PCE) of 20.03%. This work demonstrates the potential of using triazolium ILs as additives and SAM and molecular design to achieve high performance PSCs. 相似文献
123.
Daqin Guan Jing Zhou Zhiwei Hu Wei Zhou Xiaomin Xu Yijun Zhong Bo Liu Yuhui Chen Meigui Xu Hong‐Ji Lin Chien‐Te Chen Jian‐Qiang Wang Zongping Shao 《Advanced functional materials》2019,29(20)
The development of cost‐effective and high‐performance electrocatalysts for the hydrogen evolution reaction (HER) is one critical step toward successful transition into a sustainable green energy era. Different from previous design strategies based on single parameter, here the necessary and sufficient conditions are proposed to develop bulk non‐noble metal oxides which are generally considered inactive toward HER in alkaline solutions: i) multiple active sites for different reaction intermediates and ii) a short reaction path created by ordered distribution and appropriate numbers of these active sites. Computational studies predict that a synergistic interplay between the ordered oxygen vacancies (at pyramidal high‐spin Co3+ sites) and the O 2p ligand holes (OLH; at metallic octahedral intermediate‐spin Co4+ sites) in RBaCo2O5.5+δ (δ = 1/4; R = lanthanides) can produce a near‐ideal HER reaction path to adsorb H2O and release H2, respectively. Experimentally, the as‐synthesized (Gd0.5La0.5)BaCo2O5.75 outperforms the state‐of‐the‐art Pt/C catalyst in many aspects. The proof‐of‐concept results reveal that the simultaneous possession of ordered oxygen vacancies and an appropriate number of OLH can realize a near‐optimal synergistic catalytic effect, which is pivotal for rational design of oxygen‐containing materials. 相似文献
124.
Erkan Aydin Michele De Bastiani Xinbo Yang Muhammad Sajjad Faisal Aljamaan Yury Smirnov Mohamed Nejib Hedhili Wenzhu Liu Thomas G. Allen Lujia Xu Emmanuel Van Kerschaver Monica Morales‐Masis Udo Schwingenschlgl Stefaan De Wolf 《Advanced functional materials》2019,29(25)
Parasitic absorption in transparent electrodes is one of the main roadblocks to enabling power conversion efficiencies (PCEs) for perovskite‐based tandem solar cells beyond 30%. To reduce such losses and maximize light coupling, the broadband transparency of such electrodes should be improved, especially at the front of the device. Here, the excellent properties of Zr‐doped indium oxide (IZRO) transparent electrodes for such applications, with improved near‐infrared (NIR) response, compared to conventional tin‐doped indium oxide (ITO) electrodes, are shown. Optimized IZRO films feature a very high electron mobility (up to ≈77 cm2 V?1 s?1), enabling highly infrared transparent films with a very low sheet resistance (≈18 Ω □?1 for annealed 100 nm films). For devices, this translates in a parasitic absorption of only ≈5% for IZRO within the solar spectrum (250–2500 nm range), to be compared with ≈10% for commercial ITO. Fundamentally, it is found that the high conductivity of annealed IZRO films is directly linked to promoted crystallinity of the indium oxide (In2O3) films due to Zr‐doping. Overall, on a four‐terminal perovskite/silicon tandem device level, an absolute 3.5 mA cm?2 short‐circuit current improvement in silicon bottom cells is obtained by replacing commercial ITO electrodes with IZRO, resulting in improving the PCE from 23.3% to 26.2%. 相似文献
125.
Ke Meng Xiao Wang Qiaofei Xu Zhimin Li Zhou Liu Longlong Wu Youdi Hu Ning Liu Gang Chen 《Advanced functional materials》2019,29(35)
Metal halide perovskites have revolutionized the development of highly efficient, solution‐processable solar cells. Further advancements rely on improving perovskite film qualities through a better understanding of the underlying growth mechanism. Here, a systematic in situ grazing‐incidence X‐ray diffraction investigation is performed, facilitated by other techniques, on the sequential deposition of formamidinium lead iodide (FAPbI3)‐based perovskite films. The active chemical reaction, composition distribution, phase transition, and crystal grain orientation are all visualized following the entire perovskite formation process. Furthermore, the influences of additive ions on the crystallization speed, grain orientation, and morphology of FAPbI3‐based films, along with their photovoltaic performances, are fully evaluated and optimized, which leads to highly reproducible and efficient perovskite solar cells. The findings provide key insights into the perovskite growth mechanism and suggest the fabrication of high‐quality perovskite films for widespread optoelectronic applications. 相似文献
126.
127.
Ping Cai Ling Ding Ziming Chen Dianhui Wang Hongliang Peng Changlai Yuan Chaohao Hu Lixian Sun Yuriy N. Luponosov Fei Huang Qifan Xue 《Advanced functional materials》2023,33(30):2300113
2D Ti3C2Tx MXene, possessing facile preparation, high electrical conductivity, flexibility, and solution processability, shows good application potential for enhancing device performance of perovskite solar cells (PVSCs). In this study, tetrabutylammonium bromide functionalized Ti3C2Tx (TBAB-Ti3C2Tx) is developed as cathode buffer layer (CBL) to regulate the PCBM/Ag cathode interfacial property for the first time. By virtue of the charge transfer from TBAB to Ti3C2Tx demonstrated by electron paramagnetic resonance and density functional theory, the TBAB-Ti3C2Tx CBL with high electrical conductivity exhibits significantly reduced work function of 3.9 eV, which enables optimization of energy level alignment and enhancement of charge extraction. Moreover, the TBAB-Ti3C2Tx CBL can effectively inhibit the migration of iodine ions from perovskite layer to Ag cathode, which synergistically suppresses defect states and reduce charge recombination. Consequently, utilizing MAPbI3 perovskite without post-treatment, the TBAB-Ti3C2Tx based device exhibits a dramatically improved power conversion efficiency of 21.65% with significantly improved operational stability, which is one of the best efficiencies reported for the devices based on MAPbI3/PCBM with different CBLs. These results indicate that TBAB-Ti3C2Tx shall be a promising CBL for high-performance inverted PVSCs and inspire the further applications of quaternary ammonium functionalized MXenes in PVSCs. 相似文献
128.
Xinbo Guo Ning Li Yushu Xu Jianfu Zhao Fucai Cui Yimu Chen Xiaoyan Du Qinghai Song Guodong Zhang Xiao Cheng Xutang Tao Zhaolai Chen 《Advanced functional materials》2023,33(22):2213995
Metal halide perovskite single crystals are promising for diverse optoelectronic applications due to their outstanding properties. In comparison to the bulk, the crystal surface suffers from high defect density and is moisture sensitive; however, surface modification strategies of perovskite single crystals are relatively deficient. Herein, solar cells based on methylammonium lead triiodide (MAPbI3) thin single crystals are selected as a prototype to improve single-crystal perovskite devices by surface modification. The surface trap passivation and protection against moisture of MAPbI3 thin single crystals are achieved by one bifunctional molecule 3-mercaptopropyl(dimethoxy)methylsilane (MDMS). The sulfur atom of MDMS can coordinate with bare Pb2+ of MAPbI3 single crystals to reduce surface defect density and nonradiative recombination. As a result, the modified devices show a remarkable efficiency of 22.2%, which is the highest value for single-crystal MAPbI3 solar cells. Moreover, MDMS modification mitigates surface ion migration, leading to enhanced reverse-bias stability. Finally, the cross-link of silane molecules forms a protective layer on the crystal surface, which results in enhanced moisture stability of both materials and devices. This work provides an effective way for surface modification of perovskite single crystals, which is important for improving the performance of single-crystal perovskite solar cells, photodetectors, X-ray detectors, etc. 相似文献
129.
Silvia G. Motti Manuel Kober-Czerny Marcello Righetto Philippe Holzhey Joel Smith Hans Kraus Henry J. Snaith Michael B. Johnston Laura M. Herz 《Advanced functional materials》2023,33(32):2300363
Metal halide perovskite (MHP) semiconductors have driven a revolution in optoelectronic technologies over the last decade, in particular for high-efficiency photovoltaic applications. Low-dimensional MHPs presenting electronic confinement have promising additional prospects in light emission and quantum technologies. However, the optimisation of such applications requires a comprehensive understanding of the nature of charge carriers and their transport mechanisms. This study employs a combination of ultrafast optical and terahertz spectroscopy to investigate phonon energies, charge-carrier mobilities, and exciton formation in 2D (PEA)2PbI4 and (BA)2PbI4 (where PEA is phenylethylammonium and BA is butylammonium). Temperature-dependent measurements of free charge-carrier mobilities reveal band transport in these strongly confined semiconductors, with surprisingly high in-plane mobilities. Enhanced charge-phonon coupling is shown to reduce charge-carrier mobilities in (BA)2PbI4 with respect to (PEA)2PbI4. Exciton and free charge-carrier dynamics are disentangled by simultaneous monitoring of transient absorption and THz photoconductivity. A sustained free charge-carrier population is observed, surpassing the Saha equation predictions even at low temperature. These findings provide new insights into the temperature-dependent interplay of exciton and free-carrier populations in 2D MHPs. Furthermore, such sustained free charge-carrier population and high mobilities demonstrate the potential of these semiconductors for applications such as solar cells, transistors, and electrically driven light sources. 相似文献
130.
Juan S. Rocha-Ortiz Jianchang Wu Jonas Wenzel Andreas J. Bornschlegl Jose Dario Perea Salvador Leon Anastasia Barabash Anna-Sophie Wollny Dirk M. Guldi Jiyun Zhang Alberto Insuasty Larry Lüer Alejandro Ortiz Andreas Hirsch Christoph J. Brabec 《Advanced functional materials》2023,33(44):2304262
Dumbbell-shaped systems based on PAHs-BODIPY-triarylamine hybrids TM-(01-04) are designed as novel and highly efficient hole-transporting materials for usage in planar inverted perovskite solar cells. BODIPY is employed as a bridge between the PAH units, and the effects of the conjugated π-system's covalent attachment and size are investigated. Fluorescence quenching, 3D fluorescence heat maps, and theoretical studies support energy transfer within the moieties. The systems are extremely resistant to UVC 254 nm germicidal light sources and present remarkable thermal stability at degradation temperatures exceeding 350 °C. Integrating these systems into perovskite solar cells results in outstanding power conversion efficiency (PCE), with TM-02-based devices exhibiting a PCE of 20.26%. The devices base on TM-01, TM-03, and TM-04 achieve PCE values of 16.98%, 17.58%, and 18.80%, respectively. The long-term stability of these devices is measured for 600 h, with initial efficiency retention between 94% and 86%. The TM-04-based device presents noticeable stability of 94%, better than the reference polymer PTAA with 91%. These findings highlight the exciting potential of dumbbell-shaped systems based on PAHs-BODIPY-triarylamine derivatives for next-generation photovoltaics. 相似文献