首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37676篇
  免费   3090篇
  国内免费   1343篇
电工技术   1757篇
技术理论   1篇
综合类   2142篇
化学工业   17351篇
金属工艺   754篇
机械仪表   490篇
建筑科学   964篇
矿业工程   1182篇
能源动力   6045篇
轻工业   430篇
水利工程   58篇
石油天然气   6449篇
武器工业   517篇
无线电   258篇
一般工业技术   1533篇
冶金工业   1545篇
原子能技术   153篇
自动化技术   480篇
  2024年   77篇
  2023年   436篇
  2022年   920篇
  2021年   1071篇
  2020年   1096篇
  2019年   990篇
  2018年   945篇
  2017年   987篇
  2016年   1103篇
  2015年   1080篇
  2014年   1994篇
  2013年   1796篇
  2012年   2237篇
  2011年   2532篇
  2010年   1948篇
  2009年   2164篇
  2008年   1844篇
  2007年   2421篇
  2006年   2240篇
  2005年   2039篇
  2004年   1829篇
  2003年   1689篇
  2002年   1472篇
  2001年   1330篇
  2000年   1168篇
  1999年   922篇
  1998年   747篇
  1997年   573篇
  1996年   549篇
  1995年   442篇
  1994年   374篇
  1993年   244篇
  1992年   219篇
  1991年   151篇
  1990年   144篇
  1989年   89篇
  1988年   51篇
  1987年   40篇
  1986年   13篇
  1985年   39篇
  1984年   30篇
  1983年   17篇
  1982年   20篇
  1981年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1951年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The explosion venting duct can effectively reduce the hazard degree of a gas explosion and conduct the venting energy to the safe area. To investigate the flame quantitative propagation law of explosion venting with a duct, the effects of hydrogen fraction and explosion venting duct length on jet flame propagation characteristics of premixed H2-air mixtures were analyzed through experiment and simulation. The experiment results under initial conditions of room temperature and 1 atm show that when hydrogen fraction was high enough, part of the unburned hydrogen was mixed with air again to reach an ignitable concentration, resulting in the secondary combustion was easier produced and the duration of the secondary flame increased. With the increase of venting duct length, the flame front distance and propagation velocity increased. Meanwhile, the spatial distribution of pressure field and temperature field, and the propagation process and mechanism of the flame venting with a duct were analyzed using FLUENT software. The variation of the pressure wave and the pressure reflection oscillation law in the explosion venting duct was captured. Therefore, in the industrial explosion venting design with a duct, the hazard caused by the coupling of venting pressure and venting flame under different fractions should be considered comprehensively.  相似文献   
22.
Carbon-and-oxygen-doped AlN specimens were prepared by combustion synthesis using Al, graphite, and AlN. Graphite addition changed the product color from white to blue. By XRD, the lattice constant increased slightly with increasing carbon content. Blue AlN powder was synthesized with a molar ratio of the diluent AlN of 0.2-0.5 with a fixed graphite content of 0.05. At an AlN molar ratio exceeding 0.6, carbon was not successfully incorporated due to the lower reaction temperature. Calcination at 800°C in air removed residual graphite without changing the crystal structure or product color. Oxygen, nitrogen, and carbon analyses revealed that blue AlN powders contained 0.45-0.54 mass% carbon and 1.4-1.6 mass% oxygen, while the undoped AlN contained 0.021 mass% carbon and 0.94 mass% oxygen. The origin of the white-to-blue color change was investigated via reflection measurements. Blue AlN exhibits an absorption peak at 634 nm (1.96 eV). From first-principles electronic structure calculations, the C-doped AlN and carbon-and-oxygen-doped AlN with a 1:1 ratio could be classified as p-type, whereas the O-doped AlN and 1:3 carbon-and-oxygen-doped AlN were n-type. One reason for the absorption peak at 634 nm may be a transition from the conduction band to an upper unoccupied state. These results suggest the possible control of optical and electronic properties of AlN via carbon-and-oxygen doping.  相似文献   
23.
Replacement of precious single metal catalysts with cost-effective, highly-dispersed composite catalysts for catalytic hydrothermal conversion of residue holds tremendous promise for the residue upgrading technologies. Organic metals were added to the feed as the oil-soluble precursors, and transformed into the catalytic active phases in this work. Physical properties and structures of the composite catalysts had been investigated by X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscope and transmission electron microscopy. The composite catalysts were found to be highly efficient in the catalytic hydrothermal conversion of both model compound and residue. Increased metal dispersion and synergistic effects of two metals played indispensable roles in such catalytic system. Results showed that under the test conditions in the article, the catalyst had the best catalytic performance when the mass ratio of molybdenum to iron was 1.5.  相似文献   
24.
Hierarchical-Beta zeolites have been hydrothermally synthesized by adding a new gemini organic surfactant. The used gemini surfactant play the role of a “pore-forming agents” on the mesoscale, on the same time, providing alkaline environment for the system. With this hierarchical Beta zeolite as the core support, we successfully prepared a shell layer of Ni-containing (22 wt%) petal-like core-shell-like catalyst and applied it to bioethanol steam reforming. At the reaction temperature of 350 °C–550 °C, the conversion rate of ethanol and the selectivity of hydrogen were always above 85% and 70%. After reaction of 100 h on stream at 400 °C, there were not obvious inactivation could be observed on NiNPs/OH-MBeta catalyst.  相似文献   
25.
26.
27.
以废弃的流化催化裂化催化剂(简称SFCC)为载体、β-环糊精为金属络合剂、硝酸镍为镍源,采用湿法浸渍法制备β-环糊精修饰的Ni/SFCC催化剂(简称Ni/SFCC-CD催化剂),考察其对C9石油树脂的催化加氢性能。通过BET比表面积测试、H2程序升温还原、X射线光电子能谱等手段对催化剂的物相结构进行表征,研究β-环糊精的作用机理及其对催化剂加氢性能的影响。研究结果表明:在反应温度为260 ℃、反应压力为7 MPa、反应时间为2.0 h的最优条件下,采用Ni/SFCC-CD催化C9石油树脂加氢,可制得溴值为1.45 gBr/(100 g)、色号(加纳德)小于1的水白色氢化C9石油树脂,催化剂循环使用4次后仍保持良好活性;β-环糊精的作用机理是:β-环糊精与硝酸镍产生络合作用,抑制硝酸镍的分解、控制NiO的结晶过程和增强活性组分Ni与载体之间的相互作用力,从而提高了Ni/SFCC-CD的催化活性和稳定性。  相似文献   
28.
The technology for transesterification reactions between methyl esters and alcohols is well established by using classical homogeneous alkaline catalysts, which provide high conversion of methyl esters to specialty or nonindigenous esters. However, in certain products where the purity of the esters is of concern, the removal of homogeneous catalysts after the completion of the reaction is a challenge in terms of production cost and water footprint. Therefore, a study to investigate the potential of heterogeneous catalysts was conducted on reactions between methyl palmitate and triethanolamine. The degree of basicity and active surface area of calcium oxide (CaO), zinc oxide (ZnO), and magnesium oxide (MgO) were first characterized by using temperature-programmed desorption (TPD-CO2) and Brunauere–Emmett–Teller (BET), respectively. Among the metal oxides investigated, the CaO catalyst showed the best catalytic activity toward the transesterification process as it gave the highest conversion of methyl palmitate and yielded fatty esteramine compositions similar to the conventional homogeneous catalyst. The optimum transesterification condition by using the CaO catalyst utilized a lower vacuum system of approximately 200 mbar, which could minimize a considerable amount of energy consumption. Furthermore, low CaO dosage of 0.1% was able to give a conversion of 94.5% methyl ester and formed esteramine at 170 °C for 2 h. Therefore, the production of esterquats from esteramine may become more economically feasible through the methyl ester route by using the CaO catalyst, which can be recycled three times.  相似文献   
29.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   
30.
Biodiesel was prepared from waste cooking oil combined with methanol. The process was performed via transesterification in a microreactor using kettle limescale as a heterogeneous catalyst and various cosolvents under different conditions. n‐Hexane and tetrahydrofuran were selected as cosolvents to investigate fatty acid methyl esters (FAMEs). To optimize the reaction conditions, the main parameters affecting FAME% including reaction temperature, catalyst concentration, oil‐to‐methanol volumetric ratio, and cosolvent‐to‐methanol volumetric ratio were studied via response surface methodology. Under optimal reaction conditions and in the presence of the cosolvents n‐hexane and tetrahydrofuran, high FAME purities were achieved. Considering the experimental results, the limescale catalyst is a unique material, and the cosolvent method can reduce significantly the reaction time and biodiesel production cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号