首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4671篇
  免费   596篇
  国内免费   174篇
电工技术   16篇
综合类   72篇
化学工业   1376篇
金属工艺   97篇
机械仪表   75篇
建筑科学   83篇
矿业工程   4篇
能源动力   1篇
轻工业   170篇
水利工程   1篇
石油天然气   3篇
武器工业   6篇
无线电   728篇
一般工业技术   961篇
冶金工业   1529篇
原子能技术   158篇
自动化技术   161篇
  2024年   23篇
  2023年   228篇
  2022年   492篇
  2021年   588篇
  2020年   262篇
  2019年   241篇
  2018年   186篇
  2017年   189篇
  2016年   178篇
  2015年   176篇
  2014年   191篇
  2013年   158篇
  2012年   155篇
  2011年   269篇
  2010年   248篇
  2009年   219篇
  2008年   195篇
  2007年   192篇
  2006年   170篇
  2005年   203篇
  2004年   141篇
  2003年   135篇
  2002年   126篇
  2001年   90篇
  2000年   33篇
  1999年   21篇
  1998年   26篇
  1997年   26篇
  1996年   18篇
  1995年   17篇
  1994年   15篇
  1993年   27篇
  1992年   25篇
  1991年   7篇
  1990年   17篇
  1989年   26篇
  1988年   18篇
  1987年   9篇
  1986年   10篇
  1985年   4篇
  1984年   10篇
  1979年   4篇
  1966年   6篇
  1965年   5篇
  1964年   10篇
  1963年   3篇
  1961年   3篇
  1960年   5篇
  1959年   3篇
  1955年   5篇
排序方式: 共有5441条查询结果,搜索用时 15 毫秒
61.
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.  相似文献   
62.
Skeletal muscle regeneration is highly dependent on the inflammatory response. A wide variety of innate and adaptive immune cells orchestrate the complex process of muscle repair. This review provides information about the various types of immune cells and biomolecules that have been shown to mediate muscle regeneration following injury and degenerative diseases. Recently developed cell and drug-based immunomodulatory strategies are highlighted. An improved understanding of the immune response to injured and diseased skeletal muscle will be essential for the development of therapeutic strategies.  相似文献   
63.
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.  相似文献   
64.
As widely acknowledged, 40–50% of all melanoma patients harbour an activating BRAF mutation (mostly BRAF V600E). The identification of the RAS–RAF–MEK–ERK (MAP kinase) signalling pathway and its targeting has represented a valuable milestone for the advanced and, more recently, for the completely resected stage III and IV melanoma therapy management. However, despite progress in BRAF-mutant melanoma treatment, the two different approaches approved so far for metastatic disease, immunotherapy and BRAF+MEK inhibitors, allow a 5-year survival of no more than 60%, and most patients relapse during treatment due to acquired mechanisms of resistance. Deep insight into BRAF gene biology is fundamental to describe the acquired resistance mechanisms (primary and secondary) and to understand the molecular pathways that are now being investigated in preclinical and clinical studies with the aim of improving outcomes in BRAF-mutant patients.  相似文献   
65.
Human cytomegalovirus (HCMV) belongs to the β-herpesvirus family, which is transmitted in almost every part of the world and is carried by more than 90% of the general population. Increasing evidence indicates that HCMV infection triggers numerous diseases by disrupting the normal physiological activity of host cells, particularly apoptosis. Apoptosis disorder plays a key role in the initiation and development of multiple diseases. However, the relationship and molecular mechanism of HCMV-related diseases and apoptosis have not yet been systematically summarized. This review aims to summarize the role of apoptosis in HCMV-related diseases and provide an insight into the molecular mechanism of apoptosis induced by HCMV infection. We summarize the literature on HCMV-related diseases and suggest novel strategies for HCMV treatment by regulating apoptosis.  相似文献   
66.
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations of the GLA gene that result in a deficiency of the enzymatic activity of α-galactosidase A and consequent accumulation of glycosphingolipids in body fluids and lysosomes of the cells throughout the body. GB3 accumulation occurs in virtually all cardiac cells (cardiomyocytes, conduction system cells, fibroblasts, and endothelial and smooth muscle vascular cells), ultimately leading to ventricular hypertrophy and fibrosis, heart failure, valve disease, angina, dysrhythmias, cardiac conduction abnormalities, and sudden death. Despite available therapies and supportive treatment, cardiac involvement carries a major prognostic impact, representing the main cause of death in FD. In the last years, knowledge has substantially evolved on the pathophysiological mechanisms leading to cardiac damage, the natural history of cardiac manifestations, the late-onset phenotypes with predominant cardiac involvement, the early markers of cardiac damage, the role of multimodality cardiac imaging on the diagnosis, management and follow-up of Fabry patients, and the cardiac efficacy of available therapies. Herein, we provide a comprehensive and integrated review on the cardiac involvement of FD, at the pathophysiological, anatomopathological, laboratory, imaging, and clinical levels, as well as on the diagnosis and management of cardiac manifestations, their supportive treatment, and the cardiac efficacy of specific therapies, such as enzyme replacement therapy and migalastat.  相似文献   
67.
The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient’s hormonal status.  相似文献   
68.
The discovery of novel intronic variants in the ABCA4 locus has contributed significantly to solving the missing heritability in Stargardt disease (STGD1). The increasing number of variants affecting pre-mRNA splicing makes ABCA4 a suitable candidate for antisense oligonucleotide (AON)-based splicing modulation therapies. In this study, AON-based splicing modulation was assessed for 15 recently described intronic variants (three near-exon and 12 deep-intronic variants). In total, 26 AONs were designed and tested in vitro using a midigene-based splice system. Overall, partial or complete splicing correction was observed for two variants causing exon elongation and all variants causing pseudoexon inclusion. Together, our results confirm the high potential of AONs for the development of future RNA therapies to correct splicing defects causing STGD1.  相似文献   
69.
Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.  相似文献   
70.
For non-small cell lung cancer (NSCLC), radiotherapy (RT) and platinum-based chemotherapy (CHT) are among the main treatment options. On the other hand, radioresistance and cytotoxic drug resistance are common causes of failure. The epidermal growth factor receptor (EGFR) plays an important role in radioresponse and therapy resistance. We hypothesized that single nucleotide polymorphisms (SNPs) in the EGFR gene might affect individual sensitivity to these treatments, and thus, therapy outcome and prognosis. The association between functional EGFR SNPs and overall (OS), locoregional recurrence-free (LFRS), and metastasis-free (MFS) survival was examined in 436 patients with unresectable NSCLC receiving RT and platinum-based CHTRT. In a multivariate analysis, the rs712830 CC homozygotes showed reduced OS in the whole group (p = 0.039) and in the curative treatment subset (p = 0.047). The rs712829 TT genotype was strongly associated with decreased LRFS (p = 0.006), and the T-C haplotype was a risk factor for locoregional recurrence in our patients (p = 0.003). The rs2227983 GG alone and in combination with rs712829 T was an indicator of unfavorable LRFS (p = 0.028 and 0.002, respectively). Moreover, significant independent effects of these SNPs on OS, LRFS, and MFS were observed. Our results demonstrate that inherited EGFR gene variants may predict clinical outcomes in NSCLC treated with DNA damage-inducing therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号