首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38810篇
  免费   3615篇
  国内免费   1571篇
电工技术   1085篇
综合类   1524篇
化学工业   12864篇
金属工艺   2880篇
机械仪表   442篇
建筑科学   497篇
矿业工程   4949篇
能源动力   3768篇
轻工业   1202篇
水利工程   55篇
石油天然气   864篇
武器工业   51篇
无线电   2458篇
一般工业技术   6361篇
冶金工业   4147篇
原子能技术   347篇
自动化技术   502篇
  2024年   148篇
  2023年   800篇
  2022年   1240篇
  2021年   1633篇
  2020年   1536篇
  2019年   1427篇
  2018年   1357篇
  2017年   1447篇
  2016年   1442篇
  2015年   1375篇
  2014年   2078篇
  2013年   2295篇
  2012年   2641篇
  2011年   3141篇
  2010年   2303篇
  2009年   2171篇
  2008年   1906篇
  2007年   2166篇
  2006年   1919篇
  2005年   1523篇
  2004年   1358篇
  2003年   1234篇
  2002年   1127篇
  2001年   893篇
  2000年   864篇
  1999年   638篇
  1998年   562篇
  1997年   565篇
  1996年   398篇
  1995年   301篇
  1994年   283篇
  1993年   214篇
  1992年   215篇
  1991年   160篇
  1990年   153篇
  1989年   113篇
  1988年   82篇
  1987年   43篇
  1986年   31篇
  1985年   41篇
  1984年   33篇
  1983年   24篇
  1982年   32篇
  1981年   25篇
  1980年   15篇
  1979年   11篇
  1977年   6篇
  1974年   5篇
  1959年   5篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
机械镀锌过程中先导金属的研究   总被引:8,自引:1,他引:8  
王胜民  刘丽  何明奕 《表面技术》2003,32(4):37-39,43
通过多次试验观察,借助于扫描电子显微镜,结合物理化学、电化学的基础理论知识,对机械镀锌过程中先导金属进行了研究。分析了先导金属在镀层中的分布以及先导金属对机械镀锌形层过程的影响。结果表明机械镀锌过程中的确有先导金属存在,在机械镀锌过程的不同阶段,有着不同的金属起着先导金属的作用。先导金属可以促进机械镀锌镀层的结合强度。  相似文献   
62.
Ferromagnetic materials with a strong spin-orbit coupling (SOC) have attracted much attention in recent years because of their exotic properties and potential applications in energy-efficient spintronics. However, such materials are scarce in nature. Here, a proximity-induced paramagnetic to ferromagnetic transition for the heavy transition metal oxide CaRuO3 in (001)-(LaMnO3/CaRuO3) superlattices is reported. Anomalous Hall effect is observed in the temperature range up to 180 K. Maximal anomalous Hall conductivity and anomalous Hall angle are as large as ∼15 Ω−1 cm−1 and ∼0.93%, respectively, by one to two orders of magnitude larger than those of the typical 3d ferromagnetic oxides such as La0.67Sr0.33MnO3. Density functional theory calculations indicate the existence of avoid band crossings in the electronic band structure of the ferromagnetic CRO layer, which enhances Berry curvature thus strong anomalous Hall effects. Further evidences from polarized neutron reflectometry show that the CaRuO3 layers are in a fully ferromagnetic state (∼0.8 μB/Ru), in sharp contrast to the proximity-induced canted antiferromagnetic state in 5d oxides SrIrO3 and CaIrO3 (∼0.1 μB/Ir). More than that, the magnetic anisotropy of the (001)-(LaMnO3/CaRuO3) superlattices is eightfold symmetric, showing potential applications in the technology of multistate data storage.  相似文献   
63.
Cerium oxide nanoparticles (CONPs), widely used in catalytic applications owing to their robust redox reaction, are now being considered in therapeutic applications based on their enzyme mimetic properties such as catalase and super oxide dismutase (SOD) mimetic activities. In therapeutic applications, the emerging demand for CONPs with low cytotoxicity, high cost efficiency, and high enzyme mimetic capability necessitates the exploration of alternative synthesis and effective material design. This study presents a room temperature aqueous synthesis for low-cost production of shape-selective CONPs without potentially harmful organic substances, and additionally, investigates cell viability and catalase and SOD mimetic activities. This synthesis, at room temperature, produced CONPs with particular planes: {111}/{100} nanopolyhedra, {100} nano/submicron cubes, and {111}/{100} nanorods that grew in [110] longitudinal direction. Enzymatic activity assays indicated that nanopolyhedra with a high concentration of Ce4+ ions promoted catalase mimetic activity, while nanocubes and nanorods with high Ce3+ ion concentrations enhanced SOD mimetic activity. This is the first study indicating that shape and facet configuration design of CONPs, coupled with the retention of dominant, specific Ce valence states, potentiates enzyme mimetic activities. These findings may be utilized for CONP design aimed at enhancing enzyme mimetic activities in therapeutic applications.
  相似文献   
64.
Constructing heterojunctions is an excellent way to enhance the photocatalytic property of semiconductors. Herein, a range of S-scheme BiOCl/g-C3N4 heterojunctions with varying mass ratios were designed using a facile hydrothermal route, and their photocatalytic ability was assessed by degrading the ethyl xanthate (EX) under visible light (λ > 400 nm). The results showed that the degradation efficiency of BiOCl/g-C3N4-0.1 heterojunction for EX was up to 91.2 % within 180 min, and its apparent rate constants (Kapp) were 4.3 and 11 times greater than those of BiOCl and g-C3N4, respectively. The experimental and characterization results revealed that the excellent photocatalytic property was ascribed to the construction of S-scheme heterojunctions. Such structure not only enhanced the visible light response but also facilitated the efficient separation of photoinduced carriers with the S-scheme transfer route, retaining strong redox-capable holes and electrons to participate in surface reactions. Furthermore, the cycling experiments indicated that the fabricated photocatalysts have great recyclability and stability. Based on the results of active substance capture, the S-scheme charge transfer model was proposed and the photodegradation mechanism of EX was reasonably elucidated. Overall, this work offers some theoretical direction for the design and construction of S-scheme heterojunctions with superior visible-light-driven photocatalytic performance.  相似文献   
65.
Abstract— Non‐volatile memory effects of an all‐solution‐processed oxide thin‐film transistor (TFT) with ZnO nanoparticles (NPs) as the charge‐trapping layer are reported. The device was fabricated by using a soluble MgInZnO active channel on a ZrHfOx gate dielectric. ZnO NPs were used as the charge‐trapping site at the gate‐insulator—channel interface, and Al was used for source and drain electrodes. Transfer characteristics of the device showed a large clockwise hysteresis, which can be used to demonstrate its memory function due to electron trapping in the ZnO NP charge‐trapping layer. This memory effect has the potential to be utilized as a memory application on displays and disposable electronics.  相似文献   
66.
Electrodes with micro-gaps are fabricated by using dc-sputtering and FIB techniques. SnO2 nanowires are deposited on the micro-gap (1-30 μm) by suspension dropping method to fabricate a micro-gas sensor. The sensing ability of various SnO2 micro-gap sensors is measured. A comparison between sensors reveals that the short-gap electrode has numerous advantages in terms of reliability, high sensitivity and detection of low concentrations of NO2, while the large-gap electrode is relatively sensitive for high concentrations. Conductance measurements are carried out at different surface temperatures and NO2 concentrations in order to investigate the effects that the gap size has on the overall sensor conductance. The results suggest that the interface between the electrode and sensitive layer has a very important role for the sensing mechanism of tin dioxide gas sensors.  相似文献   
67.
Nanocrystalline WO3/TiO2-based powders have been prepared by the high energy activation method with WO3 concentration ranging from 1 to 10 mol%. The samples were thermal treated in a microwave oven at 600 °C for 20 min and their structural and micro-structural characteristics were evaluated by X-ray diffraction, Raman spectroscopy, EXAFS measurements at the Ti K-edge, and transmission electron microscopy. Nitrogen adsorption isotherms and H2 Temperature Programmed Reduction were also carried out for physical characterization. The crystallite and particle mean sizes ranged from 30 to 40 nm and from 100 to 190 nm, respectively. Good sensor response was obtained for samples with at least 5 mol% WO3 activated for at least 80 min. Ceramics heat-treated in microwave oven for 20 min have shown similar sensor response as those prepared in conventional oven for 120 min, which is highly cost effective. These results indicate that WO3/TiO2 ceramics can be used as a humidity sensor element.  相似文献   
68.
Binary oxides of manganese and vanadium have been synthesized by solid state sintering, in which the mass ratio of the individual components Mn2O3 and VO2 have been varied from 90:10 to 5:95. The bulk ceramic samples were characterized by X-ray diffraction and scanning electron microscopy with energy dispersive X-ray analysis. The initial compositions either rich in Mn2O3 or in equi-proportion by mass with VO2 yield β-Mn2V2O7 or a new crystalline form of Mn2V2O7, with unit cell parameters: a = 7.73091 Å, b = 6.640788 Å, c = 6.70779 Å α = γ = 90° and β = 98.7086° which is designated as γ-Mn2V2O7. The compositions, richer in VO2 produce MnV2O6 co-existing with V2O5 the proportion of which increases with increase in VO2. The surface microanalysis shows a spherical-granular morphology in Mn2V2O7 structure and plate/rod-like structures co-existing with granular morphology in case of MnV2O6 together with V2O5. The electrical parameters of the negative temperature coefficient thermistors were determined. Depending on the constituent oxide composition, the NTC thermistors showed room temperature resistivity in the range of 6.52 × 102 to 6.1 × 106 Ω-cm. The thermistor constant and activation energy are in the range of 0.12–0.458 eV and 1393–4801 K, respectively.  相似文献   
69.
溶胶—凝胶法制备氧化钨电色薄膜   总被引:5,自引:0,他引:5  
  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号