首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7098篇
  免费   881篇
  国内免费   355篇
电工技术   258篇
技术理论   1篇
综合类   328篇
化学工业   744篇
金属工艺   140篇
机械仪表   252篇
建筑科学   274篇
矿业工程   52篇
能源动力   691篇
轻工业   295篇
水利工程   154篇
石油天然气   103篇
武器工业   54篇
无线电   747篇
一般工业技术   531篇
冶金工业   115篇
原子能技术   345篇
自动化技术   3250篇
  2024年   12篇
  2023年   53篇
  2022年   135篇
  2021年   145篇
  2020年   118篇
  2019年   120篇
  2018年   156篇
  2017年   280篇
  2016年   316篇
  2015年   332篇
  2014年   454篇
  2013年   397篇
  2012年   470篇
  2011年   534篇
  2010年   448篇
  2009年   473篇
  2008年   470篇
  2007年   395篇
  2006年   444篇
  2005年   459篇
  2004年   422篇
  2003年   390篇
  2002年   270篇
  2001年   169篇
  2000年   145篇
  1999年   127篇
  1998年   88篇
  1997年   88篇
  1996年   62篇
  1995年   54篇
  1994年   57篇
  1993年   47篇
  1992年   34篇
  1991年   35篇
  1990年   15篇
  1989年   16篇
  1988年   17篇
  1987年   14篇
  1986年   5篇
  1985年   7篇
  1984年   14篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1979年   2篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1959年   2篇
排序方式: 共有8334条查询结果,搜索用时 15 毫秒
101.
In this paper we introduce the constrained tetrahedralization as a new acceleration structure for ray tracing. A constrained tetrahedralization of a scene is a tetrahedralization that respects the faces of the scene geometry. The closest intersection of a ray with a scene is found by traversing this tetrahedralization along the ray, one tetrahedron at a time. We show that constrained tetrahedralizations are a viable alternative to current acceleration structures, and that they have a number of unique properties that set them apart from other acceleration structures: constrained tetrahedralizations are not hierarchical yet adaptive; the complexity of traversing them is a function of local geometric complexity rather than global geometric complexity; constrained tetrahedralizations support deforming geometry without any effort; and they have the potential to unify several data structures currently used in global illumination.  相似文献   
102.
Although considerable attention in recent years has been given to the problem of symmetry detection in general shapes, few methods have been developed that aim to detect and quantify the intrinsic symmetry of a shape rather than its extrinsic, or pose‐dependent symmetry. In this paper, we present a novel approach for efficiently computing symmetries of a shape which are invariant up to isometry preserving transformations. We show that the intrinsic symmetries of a shape are transformed into the Euclidean symmetries in the signature space defined by the eigenfunctions of the Laplace‐Beltrami operator. Based on this observation, we devise an algorithm which detects and computes the isometric mappings from the shape onto itself. We show that our approach is both computationally efficient and robust with respect to small non‐isometric deformations, even if they include topological changes.  相似文献   
103.
The paper describes a technique to generate high‐quality light field representations from volumetric data. We show how light field galleries can be created to give unexperienced audiences access to interactive high‐quality volume renditions. The proposed light field representation is lightweight with respect to storage and bandwidth capacity and is thus ideal as exchange format for visualization results, especially for web galleries. The approach expands an existing sphere‐hemisphere parameterization for the light field with per‐pixel depth. High‐quality paraboloid maps from volumetric data are generated using GPU‐based ray‐casting or slicing approaches. Different layers, such as isosurfaces, but not restricted to, can be generated independently and composited in real time. This allows the user to interactively explore the model and to change visibility parameters at run‐time.  相似文献   
104.
In many business applications, large data workloads such as sales figures or process performance measures need to be monitored in real‐time. The data analysts want to catch problems in flight to reveal the root cause of anomalies. Immediate actions need to be taken before the problems become too expensive or consume too many resources. In the meantime, analysts need to have the “big picture” of what the information is about. In this paper, we derive and analyze two real‐time visualization techniques for managing density displays: (1) circular overlay d isplays which visualize large volumes of data without data shift movements after the display is full, thus freeing the analyst from adjusting the mental picture of the data after each data shift; and (2) variable resolution density displays which allow users to get the entire view without cluttering. We evaluate these techniques with respect to a number of evaluation measures, such as constancy of the display and usage of display space, and compare them to conventional d isplays with periodic shifts. Our real time data monitoring system also provides advanced interactions such as a local root cause analysis for further exploration. The applications using a number of real‐world data sets show the wide applicability and usefulness of our ideas.  相似文献   
105.
Rendering animations of scenes with deformable objects, camera motion, and complex illumination, including indirect lighting and arbitrary shading, is a long‐standing challenge. Prior work has shown that complex lighting can be accurately approximated by a large collection of point lights. In this formulation, rendering of animation sequences becomes the problem of efficiently shading many surface samples from many lights across several frames. This paper presents a tensor formulation of the animated many‐light problem, where each element of the tensor expresses the contribution of one light to one pixel in one frame. We sparsely sample rows and columns of the tensor, and introduce a clustering algorithm to select a small number of representative lights to efficiently approximate the animation. Our algorithm achieves efficiency by reusing representatives across frames, while minimizing temporal flicker. We demonstrate our algorithm in a variety of scenes that include deformable objects, complex illumination and arbitrary shading and show that a surprisingly small number of representative lights is sufficient for high quality rendering. We believe out algorithm will find practical use in applications that require fast previews of complex animation.  相似文献   
106.
A hidden‐picture puzzle contains objects hidden in a background image, in such a way that each object fits closely into a local region of the background. Our system converts image of the background and objects into line drawing, and then finds places in which to hide transformed versions of the objects using rotation‐invariant shape context matching. During the hiding process, each object is subjected to a slight deformation to enhance its similarity to the background. The results were assessed by a panel of puzzle‐solvers.  相似文献   
107.
An Example-based Procedural System for Element Arrangement   总被引:2,自引:0,他引:2  
We present a method for synthesizing two dimensional (2D) element arrangements from an example. The main idea is to combine texture synthesis techniques based‐on a local neighborhood comparison and procedural modeling systems based‐on local growth. Given a user‐specified reference pattern, our system analyzes neigh‐borhood information of each element by constructing connectivity. Our synthesis process starts with a single seed and progressively places elements one by one by searching a reference element which has local features that are the most similar to the target place of the synthesized pattern. To support creative design activities, we introduce three types of interaction for controlling global features of the resulting pattern, namely a spray tool, a flow field tool, and a boundary tool. We also introduce a global optimization process that helps to avoid local error concentrations. We illustrate the feasibility of our method by creating several types of 2D patterns.  相似文献   
108.
Recent progress in modelling, animation and rendering means that rich, high fidelity virtual worlds are found in many interactive graphics applications. However, the viewer's experience of a 3D world is dependent on the nature of the virtual cinematography, in particular, the camera position, orientation and motion in relation to the elements of the scene and the action. Camera control encompasses viewpoint computation, motion planning and editing. We present a range of computer graphics applications and draw on insights from cinematographic practice in identifying their different requirements with regard to camera control. The nature of the camera control problem varies depending on these requirements, which range from augmented manual control (semi‐automatic) in interactive applications, to fully automated approaches. We review the full range of solution techniques from constraint‐based to optimization‐based approaches, and conclude with an examination of occlusion management and expressiveness in the context of declarative approaches to camera control.  相似文献   
109.
Visual fidelity and interactivity are the main goals in Computer Graphics research, but recently also audio is assuming an important role. Binaural rendering can provide extremely pleasing and realistic three‐dimensional sound, but to achieve best results it's necessary either to measure or to estimate individual Head Related Transfer Function (HRTF). This function is strictly related to the peculiar features of ears and face of the listener. Recent sound scattering simulation techniques can calculate HRTF starting from an accurate 3D model of a human head. Hence, the use of binaural rendering on large scale (i.e. video games, entertainment) could depend on the possibility to produce a sufficiently accurate 3D model of a human head, starting from the smallest possible input. In this paper we present a completely automatic system, which produces a 3D model of a head starting from simple input data (five photos and some key‐points indicated by user). The geometry is generated by extracting information from images and accordingly deforming a 3D dummy to reproduce user head features. The system proves to be fast, automatic, robust and reliable: geometric validation and preliminary assessments show that it can be accurate enough for HRTF calculation.  相似文献   
110.
We present a practical algorithm for sampling the product of environment map lighting and surface reflectance. Our method builds on wavelet‐based importance sampling, but has a number of important advantages over previous methods. Most importantly, we avoid using precomputed reflectance functions by sampling the BRDF on‐the‐fly. Hence, all types of materials can be handled, including anisotropic and spatially varying BRDFs, as well as procedural shaders. This also opens up for using very high resolution, uncompressed, environment maps. Our results show that this gives a significant reduction of variance compared to using lower resolution approximations. In addition, we study the wavelet product, and present a faster algorithm geared for sampling purposes. For our application, the computations are reduced to a simple quadtree‐based multiplication. We build the BRDF approximation and evaluate the product in a single tree traversal, which makes the algorithm both faster and more flexible than previous methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号