首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119017篇
  免费   10657篇
  国内免费   8204篇
电工技术   4759篇
技术理论   4篇
综合类   7635篇
化学工业   36856篇
金属工艺   10031篇
机械仪表   3397篇
建筑科学   3123篇
矿业工程   2013篇
能源动力   6246篇
轻工业   8297篇
水利工程   1128篇
石油天然气   5332篇
武器工业   673篇
无线电   10927篇
一般工业技术   16777篇
冶金工业   5309篇
原子能技术   2187篇
自动化技术   13184篇
  2024年   279篇
  2023年   2100篇
  2022年   2788篇
  2021年   4577篇
  2020年   3586篇
  2019年   3367篇
  2018年   3010篇
  2017年   3588篇
  2016年   3944篇
  2015年   3943篇
  2014年   5697篇
  2013年   6888篇
  2012年   7867篇
  2011年   9708篇
  2010年   7565篇
  2009年   8594篇
  2008年   7450篇
  2007年   8686篇
  2006年   7822篇
  2005年   6224篇
  2004年   5274篇
  2003年   4505篇
  2002年   3647篇
  2001年   2862篇
  2000年   2565篇
  1999年   1982篇
  1998年   1612篇
  1997年   1265篇
  1996年   1168篇
  1995年   985篇
  1994年   917篇
  1993年   700篇
  1992年   547篇
  1991年   439篇
  1990年   364篇
  1989年   283篇
  1988年   198篇
  1987年   143篇
  1986年   129篇
  1985年   110篇
  1984年   94篇
  1983年   55篇
  1982年   66篇
  1981年   66篇
  1980年   51篇
  1979年   32篇
  1978年   20篇
  1976年   16篇
  1975年   20篇
  1951年   27篇
排序方式: 共有10000条查询结果,搜索用时 315 毫秒
101.
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19) being associated with severe pneumonia. Like with other viruses, the interaction of SARS-CoV-2 with host cell proteins is necessary for successful replication, and cleavage of cellular targets by the viral protease also may contribute to the pathogenesis, but knowledge about the human proteins that are processed by the main protease (3CLpro) of SARS-CoV-2 is still limited. We tested the prediction potentials of two different in silico methods for the identification of SARS-CoV-2 3CLpro cleavage sites in human proteins. Short stretches of homologous host-pathogen protein sequences (SSHHPS) that are present in SARS-CoV-2 polyprotein and human proteins were identified using BLAST analysis, and the NetCorona 1.0 webserver was used to successfully predict cleavage sites, although this method was primarily developed for SARS-CoV. Human C-terminal-binding protein 1 (CTBP1) was found to be cleaved in vitro by SARS-CoV-2 3CLpro, the existence of the cleavage site was proved experimentally by using a His6-MBP-mEYFP recombinant substrate containing the predicted target sequence. Our results highlight both potentials and limitations of the tested algorithms. The identification of candidate host substrates of 3CLpro may help better develop an understanding of the molecular mechanisms behind the replication and pathogenesis of SARS-CoV-2.  相似文献   
102.
Chiral molecules, especially enantiomers and diastereomers of purity > 99 %, present a significant market share within the chemical, pharmaceutical, and flavor industries. Antisolvent precipitations, both batch and semicontinuous operations to serve the current trends in flow chemistry were demonstrated to be environmentally benign and efficient tools in achieving high optical purities. Although salts are known to be insoluble in supercritical CO2, instabilities of the nascent salts were detected and applied for increasing efficiency. Diastereomeric excess values of the crystalline products exceeded 99 % in maximum of three consecutive steps both by repeated resolution with half molar equivalent of the amine to the acid and by direct recrystallization of the salts.  相似文献   
103.
104.
In this study, a simple hydrothermal synthesis method was adapted for the preparation of Co-doping Co2+/F-/TiO2 nanotubes photocatalyst, and the micro-nano structure of catalysts prepared by biomimetic technology which makes the catalyst have super-oleophilicity property. Co2+/F-/TiO2 revealed improved photocatalytic performance for denitrification of light oil compared to single TiO2 photocatalysts. The enhance of photocatalytic activity can be attributed to narrowing the band gap, increasing the light response wavelength and exposing more highly active crystal surfaces due to synergistic effects of Co2+ and F? in the photocatalyst.  相似文献   
105.
(1-x)Sr0.7Pb0.15Bi0.1TiO3-xBi4Ti3O12 ((1-x)SPBT-xBIT, x = 0-0.125) bulk ceramics were developed and calcined via the solid-state method, aimed at the application of pulsed power capacitors. The phase structures, temperature stability, hysteresis loop, and discharge properties were systematically investigated. Considering both the temperature stability and dielectric properties, 0.925SPBT-0.075BIT bulk ceramics with a capacitance variation satisfying the X7R specification were developed for pulsed power capacitors. The energy storage density was 0.252 J/cm3, and the ceramics showed high temperature stability at 80 kV/cm. The discharge current waveforms of the 0.925SPBT-0.075BIT ceramics were recorded. A high discharge power density of approximately 1.01 × 108 W/kg with an 8 Ω load resistor and short discharge period of 84 ns were achieved at 50 kV/cm. The good temperature stability properties and high power density show that the 0.925SPBT-0.075BIT ceramics are well suited for pulsed power capacitors with a wide temperature range.  相似文献   
106.
To modify the glycan part of glycosides, the gene encoding β‐glycosidase was cloned from Bacteroides thetaiotaomicron VPI‐5482. The cloned gene, bt_1780, was expressed in Escherichia coli MC1061 and the expressed enzyme was purified using Ni‐NTA affinity chromatography. The purified enzyme, BTBG, showed optimal activity at 50 °C and pH 5.5. Interestingly, this enzyme did not have any hydrolysing activity on ordinary β‐linkage–containing substrates such as xylobiose, lactose and cello‐oligosaccharide, but specifically hydrolysed isoflavone glycosides such as daidzin, genistin and glycitin. Compared to a commercial beta glucosidase, BTBG selectively hydrolysed isoflavone glycosides in soybean extract mixture solution. These results suggest that BTBG may be a specialized enzyme for the hydrolysis of glycosides and that the substrate specificity of BTBG is applicable for the bioconversion of isoflavone glycosides in the food industry.  相似文献   
107.
The increased concentration of CO2 due to continuous breathing and no discharge of human beings in the manned closed space, like spacecraft and submarines, can be a threat to health and safety. Effective removal of low concentration CO2 from the manned closed space is essential to meet the requirements of long-term space or deep-sea exploration, which is an international frontier and trend. Ionic liquids (ILs), as a widespread and green solvent, already showed its excellent performance on CO2 capture and absorption, indicating its potential application in low concentration CO2 capture. In this review, we first summarized the current methods and strategies for direct capture from low concentration CO2 in both the atmosphere and manned closed spaces. Then, the multi-scale simulation methods of CO2 capture by ionic liquids are described in detail, including screening ionic liquids by COSMO-RS methods, capture mechanism by density functional theory and molecular dynamics simulation, and absorption process by computational fluid dynamics simulation. Lastly, some typical IL-based green technologies for low concentration CO2 capture, such as functionalized ILs, co-solvent systems with ILs, and supported materials based on ILs, are introduced, and analyzed the subtle possibility in manned closed spaces. Finally, we look forward to the technology and development of low concentration CO2 capture, which can meet the needs of human survival in closed space and proposed that supported materials with ionic liquids have great advantages and infinite possibilities in the vital area.  相似文献   
108.
We demonstrate in this study that the combination of modern inline monitoring methods [here: inline nuclear magnetic resonance (NMR)] with simulations gains more exact and profound kinetic results than previously used methods like linearization without that combination. The 1H-NMR spectroscopic data (more than 100 data points) are used to construct the copolymerization diagram. The reactivity ratios are obtained applying the van Herks nonlinear least square method. The examination of the radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) with (2-{[2-(ethoxycarbonyl)prop-2-en-1-yl]oxy}ethyl) phosphonic acid (ECPPA) as important adhesive monomer used in dentistry yields reactivity ratios of rHEMA = 1.83; rECPPA = 0.42. The copolymerization diagram reflects nonideal, non-azeotropic copolymerization. The sequence distribution of the obtained by Monte Carlo simulation indicates the generation of statistical copolymers. As an important finding, it is demonstrated that the repeating units responsible for etching and adhesion are arranged over the whole polymer chain, which is necessary to achieve proper functionality. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48256.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号