首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1348篇
  免费   53篇
  国内免费   53篇
电工技术   8篇
综合类   19篇
化学工业   226篇
金属工艺   348篇
机械仪表   34篇
建筑科学   85篇
矿业工程   15篇
能源动力   74篇
轻工业   26篇
水利工程   7篇
石油天然气   60篇
武器工业   5篇
无线电   98篇
一般工业技术   185篇
冶金工业   40篇
原子能技术   59篇
自动化技术   165篇
  2023年   13篇
  2022年   28篇
  2021年   26篇
  2020年   37篇
  2019年   30篇
  2018年   27篇
  2017年   41篇
  2016年   29篇
  2015年   25篇
  2014年   68篇
  2013年   104篇
  2012年   38篇
  2011年   125篇
  2010年   109篇
  2009年   104篇
  2008年   83篇
  2007年   86篇
  2006年   74篇
  2005年   51篇
  2004年   61篇
  2003年   51篇
  2002年   41篇
  2001年   23篇
  2000年   23篇
  1999年   24篇
  1998年   33篇
  1997年   23篇
  1996年   23篇
  1995年   13篇
  1994年   11篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
排序方式: 共有1454条查询结果,搜索用时 250 毫秒
31.
The time dependency of the amounts of corrosion products and co-existing adsorbed water on copper in humid air containing SO2 was estimated from a series of in situ time-resolved IR-RAS spectra on the basis of the relations between the band intensities and the mass changes of the corrosion products, which were determined by simultaneous measurement of IR-RAS and QCM. The amounts of both corrosion products increased slowly at the initial stage and later increased rapidly. Although the relative humidity was kept constant, the amount of adsorbed water increased nearly the same behavior as that of corrosion products in the stage of relatively small amounts of corrosion products and later increased rapidly when the amounts of corrosion products increased. In humid air without SO2, sulfite gradually decomposed and some of it changed into sulfate.  相似文献   
32.
A new hot dip Zn-7Al alloy coating was performed on a structural steel by double coating of fine Zn and Zn-7 wt.% Al alloy, to prevent severe corrosion in coastal area. The alloy-coated steels were exposed to seaside, quasi-industrial, and rural districts to compare with conventional Zn coating. Double coating was significantly effective in preventing corrosion, particularly in a seaside. It was estimated from the exposure test for 10 years that the life of the Zn-7Al alloy-coated steel would be almost four times that of the Zn-coated steel in the seaside. A bending test showed that no exfoliation occurred at the interface between the coated alloy and substrate steel. TEM observation revealed that the excellent adhesiveness of the doubly coated fine Zn and Zn-7Al alloy to the steel substrate was due to formation of the interface region consisting of heterogeneous fine phase mixture of zinc, aluminium and iron.  相似文献   
33.
Hydrogen entry and permeation into iron were measured by an electrochemical method during atmospheric corrosion reaction. The hydrogen permeation was enhanced on passive films because the hydrogen adsorption increased by the hydrogen evolution mechanism which is different from that on a bear iron surface. The permeation rate during a wet and dry corrosion cycle showed a maximum in the drying process depending upon the surface pH and the corrosion potential. The pollutant such as Na2SO3 which decreases the pH and the corrosion potential causes an increase in the permeation rate. The mechanism of the change in the permeation rate during the wet and dry cycles is explained by the polarization diagram of the electrode covered by thin water layer.  相似文献   
34.
This work presents some of the results from the project: “Effect of the environment on reinforcement durability” (DURACON) in its first two-years period, which investigates the influence of urban and marine meteorochemical parameters on the performance of reinforced concrete structures. The results presented in this investigation are from 21 marine test sites only (no urban environments are included), distributed among 11 countries (Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Mexico, Spain, Uruguay, Portugal and Venezuela). The environment was evaluated using ISO Standard 9223 and the concrete was characterized by measuring compressive strength, elastic modulus, total and effective porosity, chloride permeability according to ASTM standards, as well as the effective porosity and resistance to water absorption using the Fagerlund method. To that effect, concrete specimens (with and without reinforcement) were prepared for electrochemical and physical/mechanical/chemical tests using the existing materials in each participating country, following strict procedures which enabled the preparation of similar concrete samples. Two water/cement (w/c) ratios (0.45 and 0.65) were selected, where the concrete with 0.45 w/c ratio had to have a minimum cement content of 400 kg/m3 and the one with 0.65 w/c ratio a compressive strength of 210 kg/cm2. Type I Portland cement, siliceous sand, and crushed rock as coarse aggregates (13-mm maximum nominal size) were used. After a one-year exposure, the results of the corrosion potentiality and probability analysis of the reinforcement in the different test stations showed that, for marine atmospheres, the most aggressive environment to induce steel corrosion was at Portugal’s Cabo Raso station, and the least aggressive one was at Chile’s Valparaíso station. These results are comparable with the ones found using electrochemical measurements, after a two-year exposure.  相似文献   
35.
The extended X-ray absorption fine structure (EXAFS) method and transmission electron microscopy (TEM) have been used for characterizing the local structure and morphology of ferric oxyhydroxides, α-FeOOH and γ-FeOOH, with and without chromium. These ferric oxyhydroxide powders were prepared from aqueous solutions containing iron and chromium ions. Radial structural functions for iron obtained by Fe K edge EXAFS spectra showed that the linkage of structural units formed by FeO6 octahedra in γ-FeOOH is distorted by chromium addition, while such distortion in α-FeOOH is not clearly detected. On the other hand, Cr K edge EXAFS spectra showed that the local structure around chromium does not necessarily correspond to the local structure around of iron, which is observed by Fe K edge EXAFS spectra. This suggests that the structural units containing iron and chromium are heterogeneously distributed in these ferric oxyhydroxides. The local structural information was discussed coupled with morphological features of these ferric oxyhydroxides observed by TEM.  相似文献   
36.
In this study, the effect of Fe-Zn alloy layer that is formed during galvanizing process on the corrosion behavior of galvanized steel has been investigated. The galvanostatic dissolution of galvanized steel was carried out in 0.5 M NaCl solution to obtain the Fe-Zn alloy layer on the base steel. The alloy layer was characterized to be composed of FeZn13, FeZn7 and Fe3Zn10 intermetallic phases, which constitute the zeta, delta1 and gamma layers of galvanized steel, respectively. It was observed that the alloy layer has similar cathodic polarization behavior but different anodic polarization behavior compared to galvanized steel. The anodic current plateau of alloy layer was up to 100 times lower than that of galvanized coating. Corrosion test performed in wet-dry cyclic condition has shown that the alloy layer has lower corrosion rate as compared to galvanized steel. From the results of corrosion test of alloy layer and base steel, it was concluded that Zn2+ has positive effect on the protectiveness of the zinc corrosion products. The measurement of surface potential over the alloy/steel galvanic couple has confirmed the galvanic ability of alloy layer to protect both the alloy layer itself and the base iron during initial stage of atmospheric corrosion.  相似文献   
37.
Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na2SO4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH)2 and Fe(OH)3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na2SO4 solution film, whereas β-FeOOH appeared only under the NaCl solution film.  相似文献   
38.
Copper plates were exposed under sheltered outdoor conditions for up to one year, starting in September 2001 in Musashino City, Tokyo, a suburban area. Following various periods of exposure, the patinas on the plates were characterized to investigate their evolution by using X-ray fluorescence analysis, X-ray diffraction, field emission scanning electron microscopy, and glow discharge optical emission spectroscopy. The difference in the roles of sulfur and chlorine in the early stages of copper patination were identified by analyzing the depth profiles of these two elements. Sulfur was found on top of the patina as cupric sulfates such as posnjakite (Cu4SO4(OH)6 · H2O) or brochantite (Cu4SO4(OH)6). Brochantite appeared only after 12 months of exposure. In contrast, chlorine was found on the surface after only one month of exposure. It gradually penetrated the patina as the exposure period lengthened, forming copper chloride complexes. Chloride ions accumulated at the patina/copper interface, forming nantokite (CuCl), which promoted corrosion.  相似文献   
39.
We analyzed the copper corrosion products that formed during a month in summer and a month in winter at three sites in Tokyo using several analytical techniques. The X-ray diffraction patterns revealed that cuprite Cu2O and posnjakite Cu4SO4(OH)6·H2O formed on copper exposed in summer. By contrast, only cuprite was found in winter exposed copper. The X-ray fluorescence results indicated that the amounts of sulfur and chlorine on the copper plates exposed in summer were much greater than those in winter. This could be explained by the change in particulate sulfate and sea salt concentrations. Depth profiling analysis by Auger electron spectroscopy revealed that the oxide layer formed in summer was thicker than that in winter. This difference in oxide layer thickness could have been due to the differences in temperature, relative humidity, and the amount of sulfur and chlorine on the copper plate.  相似文献   
40.
AC and DC electrochemical experiments were performed as a function of humidity and contaminant concentration in an effort to identify the range of atmospheric environments where corrosion processes could be detected and possibly quantified. AC measurements exhibited two time constants at 25% relative humidity (RH), possibly indicating the ability to resolve both electrolyte resistance and interfacial impedance. Galvanic current measurements were sensitive to the presence of Cl2(g) at 30% RH and electrochemical transients were detected at both 30% and 50% RH levels, also indicating sensitivity to interfacial processes. Higher humidity levels allowed better quantification due to decreasing electrolyte and interfacial impedances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号