首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1871篇
  免费   51篇
  国内免费   22篇
电工技术   4篇
综合类   44篇
化学工业   441篇
金属工艺   17篇
机械仪表   86篇
建筑科学   235篇
矿业工程   35篇
能源动力   85篇
轻工业   257篇
水利工程   97篇
石油天然气   40篇
武器工业   2篇
无线电   37篇
一般工业技术   111篇
冶金工业   140篇
原子能技术   119篇
自动化技术   194篇
  2024年   10篇
  2023年   27篇
  2022年   15篇
  2021年   32篇
  2020年   35篇
  2019年   25篇
  2018年   27篇
  2017年   43篇
  2016年   43篇
  2015年   35篇
  2014年   62篇
  2013年   94篇
  2012年   84篇
  2011年   155篇
  2010年   118篇
  2009年   154篇
  2008年   107篇
  2007年   135篇
  2006年   118篇
  2005年   79篇
  2004年   85篇
  2003年   69篇
  2002年   70篇
  2001年   37篇
  2000年   33篇
  1999年   33篇
  1998年   34篇
  1997年   18篇
  1996年   26篇
  1995年   19篇
  1994年   23篇
  1993年   16篇
  1992年   15篇
  1991年   12篇
  1990年   8篇
  1989年   10篇
  1988年   8篇
  1987年   6篇
  1986年   6篇
  1985年   9篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
排序方式: 共有1944条查询结果,搜索用时 15 毫秒
71.
Mixed strains Delftia sp.YH01 and Acidovorax sp.YH02, with capability of heterotrophic nitrification-aerobic denitrification, were introduced into a two-stage aerobic sequencing batch reactor to enhance NO3-N removal. With optimal C/N of 8, efficient NO3-N removal was achieved at initial NO3-N concentration of 2000 mg·L−1. Meanwhile, the massive accumulation of NO2-N was avoided during the long operation. Compared to the one-stage aerobic sequencing batch reactor, the removal efficiency of NO3-N and TN in the two-stage aerobic sequencing batch reactor was increased by 36.5% and 42.7%, which respectively was 93.8% and 88.4%. Microbial community study showed that the mixed strains have the stronger viability and can synergistically denitrify with the indigenous microorganisms in system, such as Azoarcus, Uncultured Saprospiraceae, Thauera, Paracocccus, which could be major contributors for aerobic denitrification. The proposed technology was shown to achieve high-efficiency treatment of high NO3-N wastewater through aerobic denitrification.  相似文献   
72.
含铜废水的处理技术及研究进展   总被引:12,自引:0,他引:12  
随着冶金、电子工业的发展,产生了大量的含铜废水,给人和环境带来了危害,但这些废水又具有一定的经济价值。因此,其排放前必须净化处理并回收金属铜,以实现环境保护和资源循环利用。本文综述了化学法、物化法及生物法处理含铜废水的研究现状及应用情况,评价了各种方法的优缺点。笔者认为,生物法处理技术具备简单、高效、无二次污染等优势,在有效解决生物体颗粒化、固定化、更强的吸附及整治修复能力的条件下,生物法处理技术可望成为工业化处理含铜废水最有效可行的方法。  相似文献   
73.
The patent-pending integrated waste-to-energy system comprises both a novel biohydrogen reactor with a gravity settler (Biohydrogenator), followed by a second stage conventional anaerobic digester for the production of methane gas. This chemical-free process has been tested with a synthetic wastewater/leachate solution, and was operated at 37 °C for 45 d. The biohydrogenator (system (A), stage 1) steadily produced hydrogen with no methane during the experimental period. The maximum hydrogen yield was 400 mL H2/g glucose with an average of 345 mL H2/g glucose, as compared to 141 and 118 mL H2/g glucose for two consecutive runs done in parallel using a conventional continuously stirred tank reactor (CSTR, System (B)). Decoupling of the solids retention time (SRT) from the hydraulic retention time (HRT) using the gravity settler showed a marked improvement in performance, with the maximum and average hydrogen production rates in system (A) of 22 and 19 L H2/d, as compared with 2–7 L H2/d in the CSTR resulting in a maximum yield of 2.8 mol H2/mol glucose much higher than the 1.1–1.3 mol H2/mol glucose observed in the CSTR. Furthermore, while the CSTR collapsed in 10–15 d due to biomass washout, the biohydrogenator continued stable operation for the 45 d reported here and beyond. The methane yield for the second stage in system (A) approached a maximum value of 426 mL CH4/gCOD removed, while an overall chemical oxygen demand (COD) removal efficiency of 94% was achieved in system (A).  相似文献   
74.
This study investigated the impact of six organic loading rates (OLR) ranging from 6.5 gCOD/L-d to 206 gCOD/L-d on the performance of a novel integrated biohydrogen reactor clarifier systems (IBRCSs) comprised a continuously stirred reactor (CSTR) for biological hydrogen production, followed by an uncovered gravity settler for decoupling of solids retention time (SRT) from hydraulic retention time (HRT). The system was able to maintain a high molar hydrogen yield of 2.8 mol H2/mol glucose at OLR ranging from 6.5 to 103 gCOD/L-d, but dropped precipitously to approximately 1.2 and 1.1 mol H2/mol glucose for the OLRs of 154 and 206 gCOD/L-d, respectively. The optimum OLR at HRT of 8 h for maximizing both hydrogen molar yield and volumetric hydrogen production was 103 gCOD/L-d. A positive statistical correlation was observed between the molar hydrogen production and the molar acetate-to-butyrate ratio. Biomass yield correlated negatively with hydrogen yield, although not linearly. Analyzing the food-to-microorganisms (F/M) data in this study and others revealed that, both molar hydrogen yields and biomass specific hydrogen rates peaked at 2.8 mol H2/mol glucose and 2.3 L/gVSS-d at F/M ratios ranging from 4.4 to 6.4 gCOD/gVSS-d. Microbial community analysis for OLRs of 6.5 and 25.7 gCOD/L-d showed the predominance of hydrogen producers such as Clostridium acetobutyricum, Klebsiella pneumonia, Clostridium butyricum, Clostridium pasteurianum. While at extremely high OLRs of 154 and 206 gCOD/L-d, a microbial shift was clearly evident due to the coexistence of the non-hydrogen producers such as Lactococcus sp. and Pseudomonas sp.  相似文献   
75.
铁基可降解金属因其良好的生物相容性和优异的机械性能,在骨科植入物领域具有广阔的应用前景,但必须突破其降解速率过慢的瓶颈问题。本研究通过电化学技术对3D打印多孔铁锰合金(Fe-30Mn)支架表面进行去合金化处理。通过扫描电镜观察发现,以盐酸和氯化钠分别作为去合金化处理介质溶液,可以在支架表面形成多微孔网络结构和片状纳米结构。接触角和粗糙度测试显示,2种微纳结构的构建均显著改善了Fe-30Mn支架表面亲水性,并提升了其表面粗糙度,多微孔网络结构更加粗糙并且亲水性更好。利用静态浸泡法和电化学耐腐蚀实验评估合金化处理前后支架的腐蚀速率,发现表面微纳结构的形成可加速Fe-30Mn支架的降解。建立体外成骨细胞培养模型,通过激光共聚焦观察及细胞增殖测试发现,经合金化处理的2种支架均能支撑细胞的贴附和增殖,具有良好的细胞相容性。结果表明,经电化学去合金化处理后,Fe-30Mn支架的降解速度得以增强,同时保持了良好的生物相容性,有望在骨修复领域得到较好应用。  相似文献   
76.
Bacteria are widespread, abundant, geochemically reactive components of aquatic environments. In particular, iron-oxidizing bacteria, are involved in the oxidation and subsequent precipitation of ferrous ions. Due to this property, they have been applied in drinking water treatment processes, in order to accelerate the removal of ferrous iron from groundwaters. Iron also exerts a strong influence on arsenic concentrations in groundwater sources, while iron oxides are efficient adsorbents in arsenic removal processes. In the present study, the removal of arsenic (III and V), during biological iron oxidation has been investigated. The results showed that both inorganic forms of arsenic could be efficiently treated, for the concentration range of interest in drinking water (50-200microg/L). In addition, the oxidation of trivalent arsenic was found to be catalyzed by bacteria, leading to enhanced overall arsenic removal, because arsenic in the form of arsenites cannot be efficiently sorbed onto iron oxides. This method comprises a cost competitive technology, which can find application in treatment of groundwaters with elevated concentrations of iron and arsenic.  相似文献   
77.
Li XY  Chu HP 《Water research》2003,37(19):4781-4791
A laboratory membrane bioreactor (MBR) using a submerged polyethylene hollow-fibre membrane module with a pore size of 0.4 microm and a total surface area of 0.2 m2 was used for treating a raw water supply slightly polluted by domestic sewage. The feeding influent had a total organic carbon (TOC) level of 3-5 mg/L and an ammonia nitrogen (NH(3)-N) concentration of 3-4 mg/L. The MBR ran continuously for more than 500 days, with a hydraulic retention time (HRT) as short as 1h or less. Sufficient organic degradation and complete nitrification were achieved in the MBR effluent, which normally had a TOC of less than 2 mg/L and a NH(3)-N of lower than 0.2 mg/L. The process was also highly effective for eliminating conventional water impurities, as demonstrated by decreases in turbidity from 4.50+/-1.11 to 0.08+/-0.03 NTU, in total coliforms from 10(5)/mL to less than 5/mL and in UV(254) absorbance from 0.098+/-0.019 to 0.036+/-0.007 cm(-1). With the MBR treatment, the 3-day trihalomethane formation potential (THMFP) was significantly reduced from 239.5+/-43.8 to 60.4+/-23.1 microg/L. The initial chlorine demand for disinfection decreased from 22.3+/-5.1 to 0.5+/-0. 1mg/L. The biostability of the effluent improved considerably as the assimilable organic carbon (AOC) decreased from 134.5+/-52.7 to 25.3+/-19.9 microg/L. All of these water quality parameters show the superior quality of the MBR-treated water, which was comparable to or even better than the local tap water. Molecular size distribution analysis and the hydrophobic characterisation of the MBR effluent, in comparison to the filtered liquor from the bioreactor, suggest that the MBR had an enhanced filtration mechanism. A sludge layer on the membrane surface could have functioned as an additional barrier to the passage of typical THM precursors, such as large organic molecules and hydrophobic compounds. These results indicate that the MBR with a short HRT could be developed as an effective biological water treatment process to address the urgent need of many developing countries that are plagued by the serious contamination of surface water resources.  相似文献   
78.
The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mgl(-1), for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 microm after 15 min of disintegration with the simultaneous release of proteins (1550 mgl(-1)) and carbohydrates (307 mgl(-1)) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (>or=10 min or >or=9000 kJkg(-1)TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis.  相似文献   
79.
In anaerobic wastewater treatment, the occurrence of biological sulfate reduction results in the formation of unwanted hydrogen sulfide, which is odorous, corrosive and toxic. In this paper, the role and application of bacteria in anaerobic and aerobic sulfur transformations are described and exemplified for the treatment of a paper mill wastewater. The sulfate containing wastewater first passes an anaerobic UASB reactor for bulk COD removal which is accompanied by the formation of biogas and hydrogen sulfide. In an aeration pond, the residual CODorganic and the formed dissolved hydrogen sulfide are removed. The biogas, consisting of CH4 (80-90 vol.%), CO2 (10-20 vol.%) and H2S (0.8-1.2 vol.%), is desulfurised prior to its combustion in a power generator thereby using a new biological process for H2S removal. This process will be described in more detail in this paper. Biomass from the anaerobic bioreactor has a compact granular structure and contains a diverse microbial community. Therefore, other anaerobic bioreactors throughout the world are inoculated with biomass from this UASB reactor. The sludge was also successfully used in investigation on sulfate reduction with carbon monoxide as the electron donor and the conversion of methanethiol. This shows the biotechnological potential of this complex reactor biomass.  相似文献   
80.
闵锐 《辐射防护通讯》2009,29(5):12-18,40
辐射生物学研究已有80余年,虽然我们对辐射诱导各种生物学效应发生的基础、过程、结果以及各种影响因素已经有了较深入和广泛的认识,但随着研究的深入和应用的广泛,出现了许多用过去的辐射生物学理论和模型无法说明和解释的问题。要研究和阐明这些问题,需考虑生物系统的复杂性、反应的多样性、效应发生的时效性和生物调节反馈的多样性,从多维的角度用系统的方法进行研究。本文介绍了系统辐射生物学,研究系统辐射生物学需要考虑的主要方面,以及研究的方法和影响因素。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号