In the post-genomic era, proteomics has achieved significant theoretical and practical advances with the development of high-throughput technologies. Especially the rapid accumulation of protein-protein interactions (PPIs) provides a foundation for constructing protein interaction networks (PINs), which can furnish a new perspective for understanding cellular organizations, processes, and functions at network level. In this paper, we present a comprehensive survey on three main characteristics of PINs: centrality, modularity, and dynamics. 1) Different centrality measures, which are used to calculate the importance of proteins, are summarized based on the structural characteristics of PINs or on the basis of its integrated biological information; 2) Different modularity definitions and various clustering algorithms for predicting protein complexes or identifying functional modules are introduced; 3) The dynamics of proteins, PPIs and sub-networks are discussed, respectively. Finally, the main applications of PINs in the complex diseases are reviewed, and the challenges and future research directions are also discussed. 相似文献
Due to the complexity of the machine tool structure and the cutting process, the dynamics of machining processes are still not completely understood. This is especially true due to the demand of high-speed machining to increase productivity. In order to model and control these complex processes, new approaches, which can represent complex phenomenon combined with learning ability, are needed. The combined neural–fuzzy approach appears to be ideally suited for this purpose. In this paper, the recently developed fuzzy adaptive network (FAN) is used to model surface roughness in turning operations. The FAN network has both the learning ability of neural network and linguistic representation of complex, not well-understood, vague phenomenon. Furthermore, it can continuously improve the initially obtained rough model based on the daily operating data. To illustrate this approach, a model representing the influences of machining parameters on surface roughness is established and then the model is verified by the use of the results of pilot experiments. Finally, a comparison with the results based on statistical regression is provided. 相似文献
The useful life of a cutting tool and its operating conditions largely control the economics of the machining operations. Hence, it is imperative that the condition of the cutting tool, particularly some indication as to when it requires changing, to be monitored. The drilling operation is frequently used as a preliminary step for many operations like boring, reaming and tapping, however, the operation itself is complex and demanding.
Back propagation neural networks were used for detection of drill wear. The neural network consisted of three layers input, hidden and output. Drill size, feed, spindle speed, torque, machining time and thrust force are given as inputs to the ANN and the flank wear was estimated. Drilling experiments with 8 mm drill size were performed by changing the cutting speed and feed at two different levels. The number of neurons in the hidden layer were selected from 1, 2, 3, …, 20. The learning rate was selected as 0.01 and no smoothing factor was used. The estimated values of tool wear were obtained by statistical analysis and by various neural network structures. Comparative analysis has been done between statistical analysis, neural network structures and the actual values of tool wear obtained by experimentation. 相似文献