首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   14篇
  国内免费   78篇
电工技术   1篇
综合类   11篇
化学工业   9篇
金属工艺   8篇
机械仪表   3篇
建筑科学   1篇
矿业工程   2篇
能源动力   2篇
武器工业   2篇
无线电   566篇
一般工业技术   88篇
冶金工业   3篇
原子能技术   2篇
自动化技术   5篇
  2023年   5篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   12篇
  2016年   11篇
  2015年   8篇
  2014年   6篇
  2013年   9篇
  2012年   15篇
  2011年   20篇
  2010年   5篇
  2009年   25篇
  2008年   25篇
  2007年   31篇
  2006年   49篇
  2005年   35篇
  2004年   28篇
  2003年   31篇
  2002年   32篇
  2001年   34篇
  2000年   54篇
  1999年   26篇
  1998年   37篇
  1997年   33篇
  1996年   33篇
  1995年   25篇
  1994年   10篇
  1993年   29篇
  1992年   10篇
  1991年   8篇
  1990年   19篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有703条查询结果,搜索用时 0 毫秒
101.
We demonstrated an unambiguous quantum dot cascade laser based on InGaAs/GaAs/InAs/InAlAs heterostructure by making use of self-assembled quantum dots in the Stranski-Krastanow growth mode and two-step strain compensation active region design. The prototype generates stimulated emission at λ ~ 6.15 μm and a broad electroluminescence band with full width at half maximum over 3 μm. The characteristic temperature for the threshold current density within the temperature range of 82 to 162 K is up to 400 K. Moreover, our materials show the strong perpendicular mid-infrared response at about 1,900 cm-1. These results are very promising for extending the present laser concept to terahertz quantum cascade laser, which would lead to room temperature operation.

PACS

42.55.Px; 78.55.Cr; 78.67.Hc  相似文献   
102.
Compositionally graded InxGa1−xP (x=0.48→x=1) metamorphic layers have been grown on GaAs substrate by solid source molecular beam epitaxy using a valved phosphorus cracker cell. Three series of samples were grown to optimize the growth temperature, V/III ratio and grading rate of the buffer layer. X-ray diffraction (XRD) and photoluminescence (PL) were used to characterize the samples. The following results have been obtained: (1) XRD measurement shows that all the samples are nearly fully strain relaxed and the strain relaxation ratio is about 96%; (2) the full-width at half-maximum (FWHM) of the XRD peak shows that the sample grown at 480°C offers better material quality; (3) the grading rate does not influence the FWHM of XRD and PL results; (4) adjustment of the V/III ratio from 10 to 20 improves the FWHM of XRD peak, and the linewidth of PL peak is close to the data obtained for the lattice-matched sample on InP substrate. The optimization of growth conditions will benefit the metamorphic HEMTs grown on GaAs using graded InGaP as buffer layers.  相似文献   
103.
Heterostructures for InAs-channel high-electron-mobility transistors (HEMTs) were investigated. Reactive AlSb buffer and barrier layers were replaced by more stable Al0.7Ga0.3Sb and In0.2Al0.8Sb alloys. The distance between the gate and the channel was reduced to 7–13 nm to allow good aspect ratios for very short gate lengths. In addition, n+-InAs caps were successfully deposited on the In0.2Al0.8Sb upper barrier allowing for low sheet resistance with relatively low sheet carrier density in the channel. These advances are expected to result in InAs-channel HEMTs with enhanced microwave performance and better reliability.  相似文献   
104.
A detailed analysis of the As-exposed Si (112) and subsequent Te exposure was performed. X-ray photoelectron spectroscopy shows that the Te- and As-exposed Si (112) surface had 70% As and 27% Te coverage, respectively. Direct surface coverage measurement with ion scattering spectroscopy (ISS) shows that the Si (111) surface is completely covered by As, and that of the Si (112) had about 78% and 20% coverage of As and Te, respectively. Finally, using ISS shadowing effects, it was found that the Te atoms were positioned mainly on the step edges.  相似文献   
105.
多带激励语音压缩(MBE)算法广泛应用于保密通信中,近来,随着语音压缩编解码技术的进步,信息隐藏载体的多样化发展,出现了以MBE为载体的密写文件。为了保障保密通信安全,提出了一种MBE算法的分析与优化技术。通过对算法的清浊音判决模块优化,浮点转定点,牛顿迭代法实现开平方,对超越函数查表实现等方法,并采用基于SOC/Leon3微处理器架构的现场可编程门阵列(FPGA)实现,减少了近45%硬件资源的消耗,并且运算实时性能提升了约29%,为针对MBE的隐写分析提供了一个很好的平台。  相似文献   
106.
采用分子束外延(MBE)方法,在(001)GaAs衬底上生长了短周期Ⅱ型超晶格(SLs):InAs/GaSb (2ML/8ML)和InAs/GaSb (8ML/8ML).从X射线衍射(HRXRD)中计算出超晶格周期分别为31.2和57.3.室温红外透射光谱表明两种超晶格结构在短波2.1μm和中波5μm处有明显吸收.通过腐蚀、光刻和欧姆接触,制备了短波和中波的单元光导探测器.在室温和低温下进行光谱响应测试和黑体测试,77K下,50%截止波长分别为2.1μm和5.0μm,黑体探测率D·bb均超过2×108cmHz1/2/W.室温下短波探测器D·bb超过108cmHz1/2/W.  相似文献   
107.
Investigation into resonant-cavity-enhanced (RCE) HgCdTe detectors has revealed a discrepancy in the refractive index of the CdTe layers grown by molecular beam epitaxy (MBE) for the detectors, compared with the reported value for crystalline CdTe. The refractive index of the CdTe grown for RCE detectors was measured using ellipsometry and matches that of CdTe with an inclusion of approximately 10% voids. X-ray measurements confirm that the sample is crystalline and strained to match the lattice spacing of the underlying Hg(1−x)Cd(x)Te, while electron diffraction patterns observed during growth indicate that the CdTe layers exhibit some three-dimensional structure. Secondary ion mass spectroscopy results further indicate that there is enhanced interdiffusion at the interface between Hg(1−x)Cd(x)Te and CdTe when the Hg(1−x)Cd(x)Te is grown on CdTe, suggesting that the defects are nucleated within the CdTe layers.  相似文献   
108.
Semiconductor materials with wide band gap have been extensively used to fabri-cate the blue laser light emitting diodes and ultraviolet photodetectors, which are impor-tant elements of semiconductor instruments, such as displays, optical data storages, ul-traviolet sensors, electroluminescent devices and solar-blind detectors. This kind of ma-terials is now becoming a hot research object in semiconductor physics. GaN was the first suitable ultraviolet laser material people found in this real…  相似文献   
109.
A computational model is a computer program, which attempts to simulate an abstract model of a particular system. Computational models use enormous calculations and often require supercomputer speed. As personal computers are becoming more and more powerful, more laboratory experiments can be converted into computer models that can be interactively examined by scientists and students without the risk and cost of the actual experiments. The future of programming is concurrent programming. The threaded programming model provides application programmers with a useful abstraction of concurrent execution of multiple tasks. The objective of this release is to address the design of architecture for scientific application, which may execute as multiple threads execution, as well as implementations of the related shared data structures.

New version program summary

Program title: GrowthCPCatalogue identifier: ADVL_v4_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL_v4_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 32 269No. of bytes in distributed program, including test data, etc.: 8 234 229Distribution format: tar.gzProgramming language: Free Object PascalComputer: multi-core x64-based PCOperating system: Windows XP, Vista, 7Has the code been vectorised or parallelized?: NoRAM: More than 1 GB. The program requires a 32-bit or 64-bit processor to run the generated code. Memory is addressed using 32-bit (on 32-bit processors) or 64-bit (on 64-bit processors with 64-bit addressing) pointers. The amount of addressed memory is limited only by the available amount of virtual memory.Supplementary material: The figures mentioned in the “Summary of revisions” section can be obtained here.Classification: 4.3, 7.2, 6.2, 8, 14External routines: Lazarus [1]Catalogue identifier of previous version: ADVL_v3_0Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 709Does the new version supersede the previous version?: YesNature of problem: Reflection high-energy electron diffraction (RHEED) is an important in-situ analysis technique, which is capable of giving quantitative information about the growth process of thin layers and its control. It can be used to calibrate growth rate, analyze surface morphology, calibrate surface temperature, monitor the arrangement of the surface atoms, and provide information about growth kinetics. Such control allows the development of structures where the electrons can be confined in space, giving quantum wells or even quantum dots. In order to determine the atomic positions of atoms in the first few layers, the RHEED intensity must be measured as a function of the scattering angles and then compared with dynamic calculations. The objective of this release is to address the design of architecture for application that simulates the rocking curves RHEED intensities during hetero-epitaxial growth process of thin films.Solution method: The GrowthCP is a complex numerical model that uses multiple threads for simulation of epitaxial growth of thin layers. This model consists of two transactional parts. The first part is a mathematical model being based on the Runge–Kutta method with adaptive step-size control. The second part represents first-principles of the one-dimensional RHEED computational model. This model is based on solving a one-dimensional Schrödinger equation. Several problems can arise when applications contain a mixture of data access code, numerical code, and presentation code. Such applications are difficult to maintain, because interdependencies between all the components cause strong ripple effects whenever a change is made anywhere. Adding new data views often requires reimplementing a numerical code, which then requires maintenance in multiple places. In order to solve problems of this type, the computational and threading layers of the project have been implemented in the form of one design pattern as a part of Model-View-Controller architecture.Reasons for new version: Responding to the users? feedback the Growth09 project has been upgraded to a standard that allows the carrying out of sample computations of the RHEED intensities for a disordered surface for a wide range of single- and epitaxial hetero-structures. The design pattern on which the project is based has also been improved. It is shown that this model can be effectively used for multithreaded growth simulations of thin epitaxial layers and corresponding RHEED intensities for a wide range of single- and hetero-structures. Responding to the users? feedback the present release has been implemented using a well-documented free compiler [1] not requiring the special configuration and installation additional libraries.Summary of revisions:
  • 1. 
    The logical structure of the Growth09 program has been modified according to the scheme showed in Fig. 1.1 The class diagram in Fig. 11 is a static view of the main platform-specific elements of the GrowthCP architecture. Fig. 21 provides a dynamic view by showing the creation and destruction simplistic sequence diagram for the process.
  • 2. 
    The program requires the user to provide the appropriate parameters in the form of a knowledge base for the crystal structures under investigation. These parameters are loaded from the parameters.ini files at run-time. Instructions to prepare the .ini files can be found in the new distribution.
  • 3. 
    The program enables carrying out different growth models and one-dimensional dynamical RHEED calculations for the fcc lattice with basis of three-atoms, fcc lattice with basis of two-atoms, fcc lattice with single atom basis, Zinc-Blende, Sodium Chloride, and Wurtzite crystalline structures and hetero-structures, but yet the Fourier component of the scattering potential in the TRHEEDCalculations.crystPotUgXXX() procedure can be modified and implemented according to users? specific application requirements. The Fourier component of the scattering potential of the whole crystalline hetero-structures can be determined as a sum of contributions coming from all thin slices of individual atomic layers. To carry out one-dimensional calculations of the scattering potentials, the program uses properly constructed self-consistent procedures.
  • 4. 
    Each component of the system shown in Figs. 11 and 21 is fully extendable and can easily be adapted to new changeable requirements. Two essential logical elements of the system, i.e. TGrowthTransaction and TRHEEDCalculations classes, were designed and implemented in this way for them to pass the information to themselves without the need to use the data-exchange files given. In consequence each of them can be independently modified and/or extended. Implementing other types of differential equations and the different algorithm for solving them in the TGrowthTransaction class does not require another implementation of the TRHEEDCalculations class. Similarly, implementing other forms of scattering potential and different algorithm for RHEED calculation stays without the influence on the TGrowthTransaction class construction.
Unusual features: The program is distributed in the form of main project GrowthCP.lpr, with associated files, and should be compiled using Lazarus IDE. The program should be compiled with English/USA regional and language options.Running time: The typical running time is machine and user-parameters dependent.References:
  • [1] 
    http://sourceforge.net/projects/lazarus/files/.
  相似文献   
110.
在介绍MBE语音算法以及TMS3201VC5402定点DSP芯片的基础之上,详细的讨论了改进的MBE语音算法以及它在TMS320VC5402上实时实现的关键技术,实验表明,改进以后的MBE语音算法在TMS320VC5402上得到了很好的实时实现。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号