首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   34篇
  国内免费   7篇
电工技术   86篇
综合类   12篇
化学工业   42篇
金属工艺   14篇
机械仪表   11篇
建筑科学   2篇
矿业工程   1篇
能源动力   291篇
水利工程   4篇
武器工业   4篇
无线电   2篇
一般工业技术   51篇
冶金工业   5篇
原子能技术   118篇
自动化技术   40篇
  2024年   6篇
  2023年   38篇
  2022年   46篇
  2021年   68篇
  2020年   37篇
  2019年   27篇
  2018年   13篇
  2017年   27篇
  2016年   13篇
  2015年   13篇
  2014年   28篇
  2013年   68篇
  2012年   10篇
  2011年   29篇
  2010年   17篇
  2009年   21篇
  2008年   31篇
  2007年   16篇
  2006年   17篇
  2005年   13篇
  2004年   10篇
  2003年   7篇
  2002年   12篇
  2001年   3篇
  2000年   11篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   7篇
  1993年   7篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   10篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有683条查询结果,搜索用时 15 毫秒
31.
This paper looks at heat and mass transfer effects on an unsteady MHD flow of a couple‐stress fluid in a horizontal wavy porous space with travelling thermal waves in the presence of a heat source and viscous dissipation. Initially the temperatures of the walls are maintained at different constant temperatures. The analytical expressions for velocity, temperature, and concentration field are obtained by the regular perturbation technique. The results are presented graphically for various values of emerging dimensionless parameters of the problem and are discussed to show interesting aspects of the solution. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21040 PACS: 44.15.+a, 44.30.+f, 44.27.nd, 47.50.Cd  相似文献   
32.
This paper analyzes plasma characteristics for the newly proposed concept of a closed-loop MHD power generation combined cycle system, which is used as a pulse-driven MHD accelerator to accelerate plasma to high velocity, with a nuclear plant. In this paper, since the final goal is for the space propulsion system applications, the performance of a MHD acceleration system is also analyzed by the Q1D analysis program. Results reveal that the radial velocity with the MHD effect is accelerated rapidly at the channel exit, with a calculated maximum velocity of about 4700 m/s. Consequently, specific impulse approximately 480 s and thrust of about 6550 N are estimated. The static gas temperature is evaluated at less than 600 K, while the value of about 1800 K is calculated for the stagnation gas temperature in the MHD channel.  相似文献   
33.
An advanced tokamak plasma configuration is developed based on equilibrium, ideal MHD stability, bootstrap current analysis, vertical stability and control, and poloidal field coil analysis. The plasma boundaries used in the analysis are forced to coincide with the 99% flux surface from the free-boundary equilibrium. Using an accurate bootstrap current model and external current drive profiles from ray tracing calculations in combination with optimized pressure profiles, βN values above 7.0 have been obtained. The minimum current drive requirement is found to lie at a lower βN of 6.0. The external kink mode is stabilized by a tungsten shell located at 0.33 times the minor radius and a feedback system. Plasma shape optimization has led to an elongation of 2.2 and triangularity of 0.9 at the separatrix. Vertical stability could be achieved by a combination of tungsten shells located at 0.33 times the minor radius and feedback control coils located behind the shield. The poloidal field coils were optimized in location and current, providing a maximum coil current of 8.6 MA. These developments have led to a simultaneous reduction in the power plant major radius and toroidal field from those found in a previous study [S.C. Jardin, C.E. Kessel, C.G. Bathke, D.A. Ehst, T.K. Mau, F. Najmabadi, T.W. Petrie, the ARIES Team, Physics basis for a reversed shear tokamak power plant, Fusion Eng. Design 38 (1997) 27].  相似文献   
34.
真空电弧磁流体动力学模型与仿真研究   总被引:3,自引:11,他引:3  
以离子与电子的双流体模型以及麦克斯韦方程为基础,推导得到了真空电弧的二维磁流体动力学(MHD)模型。MHD模型中包括质量方程、动量方程、能量方程、麦克斯韦方程和全欧姆定律,通过对这些方程的数值计算,得到了真空电弧等离子体参数与电流密度的分布,文中计算分析了电弧电流、电极间距以及不同分布的纵向磁场对真空电弧等离子体参数与电流密度的影响。  相似文献   
35.
The adaptive nonlinear filtering and limiting in spatially high order schemes (Yee et al. J. Comput. Phys. 150, 199–238, (1999), Sjögreen and Yee, J. Scient. Comput. 20, 211–255, (2004)) for the compressible Euler and Navier–Stokes equations have been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations, (Sjögreen and Yee, (2003), Proceedings of the 16th AIAA/CFD conference, June 23–26, Orlando F1; Yee and Sjögreen (2003), Proceedings of the International Conference on High Performance Scientific Computing, March, 10–14, Honai, Vietnam; Yee and Sjögreen (2003), RIACS Technical Report TR03. 10, July, NASA Ames Research Center; Yee and Sjögreen (2004), Proceedings of the ICCF03, July 12–16, Toronto, Canada). The numerical dissipation control in these adaptive filter schemes consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of discontinuity capturing nonlinear numerical dissipation for both the ideal and non-ideal MHD.  相似文献   
36.
By proposing a two-dimensional triggering model with concentrically circular closed magnetic field line structure, numerical research is made on the asymmetric propagation feature of coronal mass ejection (CME) in two cases emerging at the solar northern latitudes 10° and 45° respectively. The numerical results can qualitatively explain some features of CME event observed by the spacecraft SOHO and show that: (i) In these two cases, the triggering model can initiate CME with an asymmetric closed magnetic field structure, (ii) Closed magnetic structure of CME event will keep deflecting to the current sheet when it propagates away from the sun and this deflecting effect mostly happens within tens of solar radii before CME travels finally along the current sheet, (iii) The triggering model emerging at different locations can introduce CME events with different magnetic shapes. This shape happens to be circular and crescent when the triggering model emerges at the northern latitudes 10° and 45°, respecti  相似文献   
37.
We introduce a flux-splitting formula for the approximation of the ideal MHD equations in conservative form. The Faraday equation is considered as the average of an abstract kinetic equation, giving a flux-splitting formula. For the other part of the equations, we generalize formally the classical half-Maxwellian flux-splitting of the Euler equations. Numerical results on MHD shock tube problems are displayed.  相似文献   
38.
A computational method for the design of directional alloy solidification processes is addressed such that a desired growth velocity νf under stable growth conditions is achieved. An externally imposed magnetic field is introduced to facilitate the design process and to reduce macrosegregation by the damping of melt flow. The design problem is posed as a functional optimization problem. The unknowns of the design problem are the thermal boundary conditions. The cost functional is taken as the square of the L2 norm of an expression representing the deviation of the freezing interface thermal conditions from the conditions corresponding to local thermodynamic equilibrium. The adjoint method for the inverse design of continuum processes is adopted in this work. A continuum adjoint system is derived to calculate the adjoint temperature, concentration, velocity and electric potential fields such that the gradient of the L2 cost functional can be expressed analytically. The cost functional minimization process is realized by the conjugate gradient method via the FE solutions of the continuum direct, sensitivity and adjoint problems. The developed formulation is demonstrated with an example of designing the boundary thermal fluxes for the directional growth of a germanium melt with dopant impurities in the presence of an externally applied magnetic field. The design is shown to achieve a stable interface growth at a prescribed desired growth rate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
39.
EXPERIMENTAL STUDY ON ALTERNATING MAGNETIC FIELD MAGNETOHYDRODYNAMIC PUMP   总被引:1,自引:0,他引:1  
An experimental apparatus to investigate AC MHD pump was established, which mainly consists of a rotary permanent magnet with 4 poles an annular channel, a motor, a shaft and a platform. The magnet generates a field similar to sinusoid with the maximum of 0.9 T in the channel when it is rotated tip by the motor to simulate an AC magnetic field. This moving magnetic field acts on the conductive fluid in the channel, and produces an electromagnetic force to move the fluid in the same direction as that of the magnet rotating. Experiments were carried out to investigate the performance of the pump. Flow velocity in the annular channel was measured for different conduclivities and rotating speeds of the magnet. The results show that the flow rate and pressure increase as the magnetic field strength, fluid conductivity and frequency of the magnetic field increase.  相似文献   
40.
We develop a quantitative analysis of mixing regimes in an annular MHD-driven micromixer recently proposed by Gleeson et al. as a prototype for biomolecular applications. The analysis is based on the spectral properties of the advection–diffusion operator, with specific focus on the dependence of the dominant eigenvalue–eigenfunction on the Peclet number and on the system geometry. A theoretical prediction for the dominant eigenvalue encompassing all mixing regimes is developed and validated by comparison with numerical simulations. The theoretical prediction is extended to an open inflow–outflow version of the reactor, which shows the occurrence of new regimes associated with the existence of a nonuniform axial flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号