首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   16篇
  国内免费   13篇
电工技术   14篇
综合类   33篇
化学工业   55篇
金属工艺   9篇
机械仪表   16篇
建筑科学   43篇
矿业工程   7篇
能源动力   8篇
轻工业   14篇
水利工程   9篇
石油天然气   4篇
武器工业   3篇
无线电   25篇
一般工业技术   53篇
冶金工业   6篇
原子能技术   7篇
自动化技术   8篇
  2023年   9篇
  2022年   5篇
  2021年   4篇
  2020年   14篇
  2019年   9篇
  2018年   9篇
  2017年   6篇
  2016年   7篇
  2015年   10篇
  2014年   14篇
  2013年   17篇
  2012年   9篇
  2011年   18篇
  2010年   19篇
  2009年   23篇
  2008年   10篇
  2007年   17篇
  2006年   14篇
  2005年   14篇
  2004年   8篇
  2003年   19篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有314条查询结果,搜索用时 0 毫秒
311.
Nanoparticle-based approaches addressed the barriers to antibiotic resistance faced by traditional antimicrobial agents. However, nanotherapies against multibacterial infections still suffered from the lack of broad-spectrum targeting ability and the mono-inhibition pathway. In this study, a multimodality therapeutic nanoplatform (denoted as Asza) is introduced, which combines specific recognition, synergistic oxidative damage, and gene therapy, to effectively inhibit the emergence of bacterial resistance, achieving broad-spectrum sterilization activity against two Gram-positive (B. subt, S. epider) and two Gram-negative bacteria (E. coli, E. aero). In addition to the oxidative damage generated from gold nanoclusters, DNA aptamer, and CRISPR-Cas modules are combined in the Asza to recognize multiple bacteria and cleave the ftsz gene with high specificity, allowing precision treatment of multibacterial infections without damaging surrounding healthy cells. Furthermore, multimodal antimicrobial strategies can reduce the risk of the generation of bacterial resistance to single-modality therapy and significantly boost the efficiency of antibacterial therapy. This study offers a promising approach to advance the applications of nanomaterials in clinical antimicrobial therapy.  相似文献   
312.
Amplifying intracellular oxidative stress by organelle-targeted reactive oxygen species (ROS) production combined with tumor cell-specific gene disruption is a promising strategy for tumor treatment. However, due to the vulnerability of CRISPR/Cas9 ribonucleoproteins (RNPs) to ROS, co-delivery of CRISPR/Cas9 RNPs and ROS generators to enhance the sensitivity of tumor cells to oxidative stress remains challenging. Herein, a cascade-responsive “oxidative stress amplifier” (named DR-TAF-pHT/FA) is proposed, which can successively respond to cathepsin B, localized laser irradiation and ATP to generate ROS on the lysosomal membrane of tumor cells and release Cas9/sgNrf2 RNPs for efficient gene disruption. It is demonstrated that, under near infrared (NIR) irradiation, DR-TAF-pHT/FA achieves targeted rupture of lysosomal membranes, inducing significant intracellular oxidative stress. Meanwhile, due to the protective function of TAF coating (TA-Fe3+ coordination self-assembled networks), Cas9/sgNrf2 RNPs can safely escape into the cytoplasm and be released in response to ATP, further amplifying oxidative stress and promoting tumor cell apoptosis through efficient Nrf2 gene disruption. Treatment with DR-TAF-pHT/FA + NIR significantly improves tumor ablation efficiency and extends median survival time (over 70 days) in Hela xenograft models. This “oxidative stress amplifier” provides a new paradigm for multimodal and synergistic tumor therapy through precise lysosomal membrane bursting together with efficient Nrf2 gene disruption.  相似文献   
313.
Recovery from damage in materials helps extend their useful lifetime and of devices that contain them. Given that the photodamages in HaP materials and based devices are shown to recover, the question arises if this also applies to mechanical damages, especially those that can occur at the nanometer scale, relevant also in view of efforts to develop flexible HaP-based devices. Here, this question is addressed by poking HaP single crystal surfaces with an atomic force microscope (AFM) tip under both ultra-high vacuum (UHV) and variably controlled ambient water vapor pressure conditions. Sequential in situ AFM scanning allowed real-time imaging of the morphological changes at the damaged sites. Using methylammonium (MA) and cesium (Cs) variants for A-site cations in lead bromide perovskites, the experiments show that nanomechanical damages on methylammonium lead bromide (MAPbBr3) crystals heal an order of magnitude faster than Cs-based ones in UHV. However, surprisingly, under ≥40% RH conditions, cesium lead bromide (CsPbBr3) shows MAPbBr3-like fast healing kinetics. Direct evidence for ion solvation on CsPbBr3 is presented, leading to the formation of a surface hydration layer. The results imply that moisture improves the ionic mobility of degradation components and leads to water-assisted improved healing, i.e., repair of nanomechanical damages in the HaPs.  相似文献   
314.
Carbon nanotube (CNT) field-effect transistors (FETs) have been considered ideal building blocks for radiation-hard integrated circuits (ICs), the demand for which is exponentially growing, especially in outer space exploration and the nuclear industry. Many studies on the radiation tolerance of CNT-based electronics have focused on the total ionizing dose (TID) effect, while few works have considered the single event effects (SEEs) and displacement damage (DD) effect, which are more difficult to measure but may be more important in practical applications. Measurements of the SEEs and DD effect of CNT FETs and ICs are first executed and then presented a comprehensive radiation effect analysis of CNT electronics. The CNT ICs without special irradiation reinforcement technology exhibit a comprehensive radiation tolerance, including a 1 × 104 MeVcm2 mg−1 level of the laser-equivalent threshold linear energy transfer (LET) for SEEs, 2.8 × 1013 MeV g−1 for DD and 2 Mrad (Si) for TID, which are at least four times higher than those in conventional radiation-hardened ICs. The ultrahigh intrinsic comprehensive radiation tolerance will promote the applications of CNT ICs in high-energy solar and cosmic radiation environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号