首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3406篇
  免费   324篇
  国内免费   137篇
电工技术   20篇
综合类   167篇
化学工业   1369篇
金属工艺   59篇
机械仪表   43篇
建筑科学   29篇
矿业工程   8篇
能源动力   464篇
轻工业   1132篇
水利工程   2篇
石油天然气   243篇
武器工业   6篇
无线电   49篇
一般工业技术   162篇
冶金工业   67篇
原子能技术   17篇
自动化技术   30篇
  2024年   6篇
  2023年   47篇
  2022年   79篇
  2021年   102篇
  2020年   107篇
  2019年   120篇
  2018年   90篇
  2017年   105篇
  2016年   129篇
  2015年   153篇
  2014年   205篇
  2013年   221篇
  2012年   302篇
  2011年   341篇
  2010年   195篇
  2009年   210篇
  2008年   194篇
  2007年   247篇
  2006年   189篇
  2005年   147篇
  2004年   103篇
  2003年   104篇
  2002年   64篇
  2001年   57篇
  2000年   28篇
  1999年   34篇
  1998年   27篇
  1997年   29篇
  1996年   53篇
  1995年   23篇
  1994年   31篇
  1993年   24篇
  1992年   30篇
  1991年   17篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有3867条查询结果,搜索用时 62 毫秒
81.
The efficient utilization of lignocellulosic biomass and the reduction of production cost are mandatory to attain a cost-effective lignocellulose-to-ethanol process. The selection of suitable pretreatment that allows an effective fractionation of biomass and the use of pretreated material at high-solid loadings on saccharification and fermentation (SSF) processes are considered promising strategies for that purpose. Eucalyptus globulus wood was fractionated by organosolv process at 200 °C for 69 min using 56% of glycerol-water. A 99% of cellulose remained in pretreated biomass and 65% of lignin was solubilized. Precipitated lignin was characterized for chemical composition and thermal behavior, showing similar features to commercial lignin. In order to produce lignocellulosic ethanol at high-gravity, a full factory design was carried to assess the liquid to solid ratio (3–9 g/g) and enzyme to solid ratio (8–16 FPU/g) on SSF of delignified Eucalyptus. High ethanol concentration (94 g/L) corresponding to 77% of conversion at 16FPU/g and LSR = 3 g/g using an industrial and thermotolerant Saccharomyces cerevisiae strain was successfully produced from pretreated biomass. Process integration of a suitable pretreatment, which allows for whole biomass valorization, with intensified saccharification-fermentation stages was shown to be feasible strategy for the co-production of high ethanol titers, oligosaccharides and lignin paving the way for cost-effective Eucalyptus biorefinery.  相似文献   
82.
Accumulating studies have suggested that probiotics have beneficial effects on liver injury but the underlying mechanism has remained unclear. Toll-like receptors (TLR) expressed on immune cells and hepatocytes recognize bacterial components that are translocated from the gut into the portal vein. To date, it has been demonstrated that ethanol alone, without microbial components, is able to activate TLR, leading to promotion of proinflammatory cytokine production. Because the enhanced signaling of TLR triggers persistent inflammation, we hypothesized that development of hepatocyte TLR tolerance to repetitive stimulation plays an important role in protecting the liver from hypergeneration of proinflammatory cytokines. In this study, we showed that Lactobacillus casei MYL01 modulated the proinflammatory state induced by ethanol and investigated in detail the mechanism underlying the observation that L. casei MYL01 gave rise to TLR tolerance toward ethanol stimulation. The effects of L. casei MYL01 in the attenuation of ethanol-induced liver damage were due to enhancement of IL-10 production, which limited the proinflammatory process. Furthermore, better defense of hepatocytes against ethanol challenge by treatment of L. casei MYL01 was attributed to previous induction of toll interacting protein (TOLLIP) and suppressor of cytokine signaling (SOCS)1 and SOCS3 expression via activation of TLR1, TLR2, TLR6, and TLR9, an action that cross-regulated ethanol–TLR4–nuclear factor κB signal transduction events. This finding might help establish an in vitro platform for selecting hepatoprotective probiotic strains in terms of ethanol-induced liver damage.  相似文献   
83.
The techno-economic analysis of a process to convert ethanol into H2 to be used as a fuel for PEM fuel cells of H2-powered cars was done. A plant for H2 production was simulated using experimental results obtained on monolith reactors for ethanol steam reforming and WGS steps. The steam reforming (Rh/CeSiO2) and WGS (Pt/ZrO2) monolith catalysts remained quite stable during long-term startup/shut down cycles, with no carbon deposition. The H2 production cost was significantly affected by the ethanol price. The monolith catalyst costs contribution was lower than that of conventional reactors. The H2 production cost obtained using the expensive Brazilian ethanol price (0.81 US$/L ethanol) was US$ 8.87/kg H2, which is lower than the current market prices (US$ 13.44/kg H2) practiced at H2 refueling stations in California. This result showed that this process is economically feasible to provide H2 as a fuel for H2-powered cars at competitive costs in refueling stations.  相似文献   
84.
BACKGROUND: Efficient conversion of glucose/xylose mixtures from lignocellulose is necessary for commercially viable ethanol production. Oxygen and carbon sources are of paramount importance for ethanol yield. The aim of this work was to evaluate different glucose/xylose mixtures for ethanol production using S. cerevisiae ITV‐01 (wild type yeast) and P. stipitis NRRL Y‐7124 and the effect of supplying oxygen in separate and co‐culture processes. RESULTS: The complete conversion of a glucose/xylose mixture (75/30 g L?1) was obtained using P. stipitis NRRL Y‐7124 under aerobic conditions (0.6 vvm), the highest yield production being Yp/s = 0.46 g g?1, volumetric ethanol productivity Qpmax = 0.24 g L?1 h?1 and maximum ethanol concentration Pmax = 34.5 g L?1. In the co‐culture process and under aerobic conditions, incomplete conversion of glucose/xylose mixture was observed (20.4% residual xylose), with a maximum ethanol production of 30.3 g L?1, ethanol yield of 0.4 g g?1 and Qpmax = 1.26 g L?1 h?1. CONCLUSIONS: The oxygen present in the glucose/xylose mixture promotes complete sugar consumption by P. stipitis NRRL Y‐7124 resulting in ethanol production. However, in co‐culture with S. cerevisiae ITV‐01 under aerobic conditions, incomplete fermentation occurs that could be caused by oxygen limitation and ethanol inhibition by P. stipitis NRRL Y‐7124; nevertheless the volumetric ethanol productivity increases fivefold compared with separate culture. Copyright © 2011 Society of Chemical Industry  相似文献   
85.
One-dimensional (1D) metal-coated Pd structures are efficient catalysts for the ethanol electro-oxidation and promising strategy for minimizing the Pd-loading toward commercialization of direct ethanol fuel cells (DEFCs). Herein, the decorated and core-shell architectures of a novel Pd coating on Ag nanowires (PdAg-NWs) are controllable by a two-step polyol method based on the galvanic replacement reaction. The integration of uniform shell with a low Pd concentration and partial hollow structure onto 1D PdAg-NWs exhibits the highest efficiency for ethanol oxidation reaction (EOR) in alkaline solution. In comparison with Pd nanoparticles (PdNPs/C), the PdAgNWs/C performes 11 times superior EOR activity, and the onset potential shifts 80 mV negatively. The presence of Ag in PdAg-NWs enhances the absorption capacity of ethanol molecules and hydroxyl ions on the active sites, and improves the catalyst tolerance to CO-like intermediates, making them a potential anodic catalyst for DEFCs.  相似文献   
86.
Microbial production of ethanol and 2,3-butanediol (2,3-BD) from agro-residues has been attracting interest because of their applications in various industries, including generation of biofuel molecules. In the present investigation, the hemicellulosic fraction of corncob was hydrolyzed by indigenous holocellulase from novel psychrotolerant Aspergillus niger SH3 resulting in high xylose release (34.61?g?L?1), followed by the bioconversion of xylose to ethanol and 2,3-BD. Taguchi design was adopted to optimize the process which resulted in 5.25- and 3.31-fold increase in 2,3-BD (12.18?±?0.53?g?L?1) and ethanol (4.08?±?0.03?g?L?1), as compared with un-optimized condition. For the first time, co-production of ethanol and 2,3-BD from the corncob hemicellulosic hydrolysate was performed using a newly isolated Klebsiella oxytoca XF7 strain, under the optimized fermentation conditions. These results suggest that K. oxytoca XF7 is a promising candidate for co-production of ethanol and 2,3-BD, with high xylose conversion efficiency (96.65%), facilitating the economical production of biofuel molecules.  相似文献   
87.
Five facultative anaerobic bacterial isolates were recovered from domestic wastewater. These isolates were identified based on the 16S rRNA as Enterobacter aerogenes (one isolate), Enterobacter cloacae (two isolates), and Cronobacter sakazakii (three isolates). These isolates were examined for their potential to evolve hydrogen on a glucose medium. The most potent hydrogen‐producing isolates, E aerogenes (KY549389) and E cloacae (KY524293), were examined for their capacity to generate hydrogen, acetone, butanol, and ethanol using orange peel (OP) hydrolysate. OP powder was pretreated with n‐hexane to remove the toxicity of d ‐limonene. Different concentrations (4%, 6%, and 8% w/v) of limonene‐free OP were subjected to the boiling water (temperature of 100°C) or acid (HCl) treatments. The maximum fermentative H2 production of 1700 and 1620 mL/L was obtained from 6% OP hydrolysate extracted with boiling water using facultative anaerobic E aerogenes (KY549389) and E cloacae (KY524293), respectively. Hydrogen production efficiency was 0.99 and 1.19 mol H2/mol glucose for E aerogenes and E cloacae, respectively. The total fermentative acetone, butanol, and ethanol (ABE) generated by E aerogenes and E cloacae were 0.78 and 0.38 g/L including acetone (0.05 and 0.04 g/L), butanol (0.011 and 0.013 g/L), and ethanol (0.71 and 0.32 g/L), respectively. The maximum ABE productivity was 0.01 and 0.005 g/L/h generated at 60 g/L OP hydrolysate by E aerogenes and E cloacae, respectively. These strains were positive for nitrogen fixation (nitrogenase) capability estimated by the acetylene reduction assay. Application of OP hydrolysate without the addition of any nutritional components or reducing agent is considered an eco‐friendly, economical, and commercial substrate for desired biofuel production.  相似文献   
88.
In this paper,CeO_2 with a pore size of 2-4 nm was synthesized by hydrothermal method.The CeO_2 modified graphene-supported Pt catalyst was prepared by the microwave-assisted ethylene glycol reduction chloroplatinic acid method,and the effect of the addition of CeO_2 prepared by different hydrothermal reaction time on the catalytic performance of Pt-based catalysts was investigated.The microstructures of CeO_2 and catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),specific surface area and pore size analyzer(BET),scanning electron microscopy(SEM) and electron spectroscopy(EDAX),transmission electron microscopy(TEM),and the catalysts electrochemical performance was tested by electrochemical workstation.The results show that the catalytic performance of the four catalysts with CeO_2 is better than that of the catalyst without CeO_2.Adding CeO_2 with a specific surface area of 120.15 m~2/g prepared by hydrothermal reaction time of 39 h to Pt/C synthesis catalyst,its electrocatalytic performance,stability and resistance to poisoning are the best.The electrochemical active surface area is 102.83 m~2/g,the peak current density of ethanol oxidation is 757.17 A/g and steady-state current density of 1100 s is 108.17 A/g which shows the lowest activation energy for ethanol oxidation reaction.When the cyclic voltammogram is scanned for 500 cycles,the oxidation peak current density retention rate is 87.74%.  相似文献   
89.
《分离科学与技术》2012,47(2):234-246
Due to an emerging scarcity of oil resources and an associated increase of oil prices, biofuels (e.g., ethanol) play an important role in the energy crisis. Fermentation is a common process for producing ethanol from renewable biomass. Pervaporation is an attractive technique for the recovery of ethanol from the fermentation systems. Separation membrane is the key element in the pervaporation separation equipments. In this article, the pervaporation performances of ethanol-permselective membranes presented in the recovery of ethanol from dilute ethanol aqueous solution are reviewed. An analytical overview on the challenges and opportunities, and the prospect of ethanol-permselective membranes by pervaporation is also discussed.  相似文献   
90.
Thermal extraction yields were obtained for 13 coals in supercritical ethanol at 250°C. The direct and indirect relationships between extraction yield and coal properties were determined using correlation and path analyses. Both nitrogen content and hydrogen content have significant and positive correlations with thermal extraction yield. However, moisture content, sulfur content, and oxygen content exhibited negative correlations with extraction yield. Path analysis demonstrated that nitrogen and carbon contents had significant direct and indirect influences on extraction yield, respectively. Nitrogen content is the preferential factor for a high extraction yield, followed by carbon and hydrogen contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号