首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
自动化技术   4篇
  2011年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
An algorithm for burned area mapping in Africa based on classification trees was developed using SPOT-VEGETATION (VGT) imagery. The derived 1 km spatial resolution burned area maps were compared with 30 m spatial resolution maps obtained with 13 Landsat ETM+ scenes, through linear regression analysis. The procedure quantifies the bias in burned area estimation present in the low spatial resolution burned area map. Good correspondence was observed for seven sites, with values of the coefficient of determination (R2) ranging from 0.787 to 0.983. Poorer agreement was observed in four sites (R2 values between 0.257 and 0.417), and intermediate values of R2 (0.670 and 0.613) were obtained for two sites. The observed variation in the level of agreement between the Landsat and VGT estimates of area burned results from differences in the spatial pattern and size distribution of burns in the different fire regimes encompassed by our analysis. Small and fragmented burned areas result in large underestimation at 1 km spatial resolution. When large and compact burned areas dominate the landscape, VGT estimates of burned area are accurate, although in certain situations there is some overestimation. Accuracy of VGT burned area estimates also depends on vegetation type. Results showed that in forest ecosystems VGT maps underestimate substantially the amount of burned area. The most accurate estimates were obtained for woodlands and grasslands. An overall linear regression fitted with the data from the 13 comparison sites revealed that there is a strong relationship between VGT and Landsat estimates of burned area, with a value of R2 of 0.754 and a slope of 0.803. Our findings indicate that burned area mapping based on 1 km spatial resolution VGT data provides adequate regional information.  相似文献   
2.
The goal of this study is to propose a new classification of African ecosystems based on an 8-year analysis of Normalized Difference Vegetation Index (NDVI) data sets from SPOT/VEGETATION. We develop two methods of classification. The first method is obtained from a k-nearest neighbour (k-NN) classifier, which represents a simple machine learning algorithm in pattern recognition. The second method is hybrid in that it combines k-NN clustering, hierarchical principles and the Fast Fourier Transform (FFT). The nomenclature of the two classifications relies on three levels of vegetation structural categories based on the Land Cover Classification System (LCCS). The two main outcomes are: (i) The delineation of the spatial distribution of ecosystems into five bioclimatic ecoregions at the African continental scale; (ii) Two ecosystem maps were made sequentially: an initial map with 92 ecosystems from the k-NN, plus a deduced hybrid classification with 73 classes, which better reflects the bio-geographical patterns. The inclusion of bioclimatic information and successive k-NN clustering elements helps to enhance the discrimination of ecosystems. Adopting this hybrid approach makes the ecosystem identification and labelling more flexible and more accurate in comparison to straightforward methods of classification. The validation of the hybrid classification, conducted by crossing-comparisons with validated continental maps, displayed a mapping accuracy of 54% to 61%.  相似文献   
3.
Multi-temporal series of satellite SPOT-VEGETATION Normalized Difference of Vegetation Index (NDVI) data from 1998 to 2003 were exploited for studying persistence in Mediterranean ecosystems of southern Italy. We used Multiple Segmenting Method (MSM), which is well suited to analyze scaling behaviour in short time series, and the Detrended Fluctuation Analysis (DFA), which permits the detection of persistent properties in nonstationary signal fluctuations. Our findings point out to the characterization of Mediterranean ecosystems as governed by persistent mechanisms.  相似文献   
4.
Measurements of spring phenological dates in boreal regions using NDVI can be affected by snowmelt. This impacts the analysis of interannual variations in phenology and the estimates of annual carbon fluxes. For these two objectives, snowmelt effect must be removed from the phenological detection. We propose a methodology for determining the date of onset of greening in the 1982-2004 period using SPOT-VEGETATION (VGT) and NOAA Advanced Very High Resolution Radiometer (AVHRR) data. From 1998 onwards, the date of onset of greening is taken as the date at which the Normalized Difference Water Index (NDWI), calculated from SPOT-VGT near and short-wave infrared bands, starts increasing. This index decreases with snowmelt but increases with vegetation greening. For the 1982-2001 period, the date of onset of greening is the date at which AVHRR-NDVI equals a pixel specific threshold (PST), determined using the results of the NDWI method in the years common to the two datasets. The methods are validated using in situ measurements of the dates of leaf appearance. RMSE of 6.7 and 7.8 days, respectively, is found using NDWI-VGT and PST-NOAA methodologies, and the difference between the two methodologies in the common years is small. Very importantly, the dates are not biased. The interannual variations of the 23-year spring phenology dataset on the study area in northern Eurasia are analysed. In average over the study area, an advance of 8 days and a delay of 3.6 days are, respectively, found over the periods 1982-1991 and 1993-2004. These results confirm and complete previous studies about the greening trend, remove the uncertainty due to snow, and may improve carbon budget calculations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号