全文获取类型
收费全文 | 10517篇 |
免费 | 2421篇 |
国内免费 | 1821篇 |
专业分类
电工技术 | 1010篇 |
技术理论 | 1篇 |
综合类 | 1038篇 |
化学工业 | 106篇 |
金属工艺 | 252篇 |
机械仪表 | 753篇 |
建筑科学 | 260篇 |
矿业工程 | 170篇 |
能源动力 | 139篇 |
轻工业 | 192篇 |
水利工程 | 163篇 |
石油天然气 | 90篇 |
武器工业 | 89篇 |
无线电 | 3273篇 |
一般工业技术 | 578篇 |
冶金工业 | 72篇 |
原子能技术 | 64篇 |
自动化技术 | 6509篇 |
出版年
2024年 | 678篇 |
2023年 | 2030篇 |
2022年 | 2403篇 |
2021年 | 2628篇 |
2020年 | 1833篇 |
2019年 | 1545篇 |
2018年 | 612篇 |
2017年 | 390篇 |
2016年 | 207篇 |
2015年 | 164篇 |
2014年 | 148篇 |
2013年 | 135篇 |
2012年 | 154篇 |
2011年 | 192篇 |
2010年 | 164篇 |
2009年 | 161篇 |
2008年 | 167篇 |
2007年 | 121篇 |
2006年 | 127篇 |
2005年 | 140篇 |
2004年 | 104篇 |
2003年 | 85篇 |
2002年 | 66篇 |
2001年 | 52篇 |
2000年 | 59篇 |
1999年 | 35篇 |
1998年 | 35篇 |
1997年 | 39篇 |
1996年 | 40篇 |
1995年 | 34篇 |
1994年 | 35篇 |
1993年 | 25篇 |
1992年 | 31篇 |
1991年 | 32篇 |
1990年 | 38篇 |
1989年 | 26篇 |
1988年 | 9篇 |
1987年 | 5篇 |
1986年 | 7篇 |
1985年 | 2篇 |
1983年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 24 毫秒
991.
992.
基于数据驱动的深度学习技术成为新一代智能电网的应用趋势,该技术对电网中有标注训练数据的量级提出更高的要求。为了获取更多有标注的智能电网样本数据,文章提出了一种基于改进的生成对抗网络(generative adversarial network,GAN)的训练样本生成算法。该方法通过交替训练改进GAN的生成模型与判别模型,无需先验知识的指导,自主学习原始样本的分布规律,生成新的数据样本。然后采用人工神经网络作为基础分类器,计算样本分类的准确率,检验生成样本的有效性。实验表明,改进GAN模型可以有效学习样本的分布规律,提升谐波分类的准确率,该方法同时具有良好的抗噪性和泛化性,对深度学习技术在智能电网中的深入发展具有重要意义。 相似文献
993.
基于CNN-LSTM混合神经网络模型的短期负荷预测方法 总被引:5,自引:0,他引:5
为了更好地挖掘海量数据中蕴含的有效信息,提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型短期负荷预测方法,将海量的历史负荷数据、气象数据、日期信息以及峰谷电价数据按时间滑动窗口构造连续特征图作为输入,先采用CNN提取特征向量,将特征向量以时序序列方式构造并作为LSTM网络输入数据,再采用LSTM网络进行短期负荷预测。使用所提方法对江苏省某地区电力负荷数据进行预测实验,实验结果表明,文中所提出的预测方法比传统负荷预测方法、随机森林模型负荷预测模型方法和标准LSTM网络负荷预测方法具有更高的预测精度。 相似文献
994.
995.
在海上风浪、载荷等因素的耦合作用下,风机状态数据波动迅速,时变工况下风机状态特征的敏感性导致维护需求的动态变化,增加了风电场维护任务精准调度的难度.文中提出了海上时变工况下考虑风机状态风险态势的风电场维护任务动态调度方法.首先,利用模糊C均值聚类算法划分风机时变工况,通过采用改进联合领域自适应卷积神经网络最小化特征分布差异,实现时变工况下风机状态特征自适应提取.然后,根据部件状态序列利用马尔可夫模型描述各部件的初始状态转移矩阵,考虑到不完全维护对机组部件性能的影响,引入部件性能退化过程,建立了考虑风机自适应状态评估的风险态势预测模型.同时,提出以维护船只、人员、工作时长等条件为约束,以单位电量调度维护成本最小为目标的海上风电场维护任务动态调度方法,实现了时变工况下海上风电场维护任务的动态调度.最后,以某海上风电场为例,验证了所提方法的有效性和经济性. 相似文献
996.
为了更加准确地识别和定位架空线路绝缘子的自爆故障,保障电力系统安全稳定运行,提出一种基于ConvNeXt和注意力机制的目标检测算法,可用于无人机、巡检机器人等设备拍摄的可见光图像中绝缘子自爆故障检测。首先,使用一种新型卷积神经网络ConvNeXt作为主干网络,使用1∶1∶1∶3的阶段模块数量比例,增强网络对抽象语义特征的提取能力;其次,使用跨阶段局部连接结构,减少网络参数量和计算复杂度,丰富网络梯度连接;最后,引入卷积注意力机制,增强网络对复杂背景中目标区域的感知能力。实验结果表明,改进后的绝缘子自爆故障检测模型的平均精度均值达到97.4%,相比基线YOLOv7提升了1.4%,能够有效实现绝缘子自爆缺陷的检测。 相似文献
997.
电铲是露天采矿中广泛使用的一种大型机械挖掘设备。 在挖掘过程中,铲齿与矿石长时间的直接冲击会造成铲齿过早
的松动甚至断裂,从而导致电铲计划外的停机和生产力的损失。 针对这个问题,提出了一种基于改进 YOLOX 的电铲铲齿断裂
检测方法。 该方法以 YOLOX 为基础,首先针对受光照不均匀等影响导致检测效果差的问题,在特征金字塔网络加入扩张卷积
注意力机制增强目标在复杂背景中的显著度;其次使用 CEIOU(corner efficient intersection over union)损失函数代替原网络损失
函数优化网络的训练过程,进而提高目标的检测精度;最后考虑嵌入式设备本身的计算能力问题,利用模型压缩策略裁剪网络
中冗余通道,减少模型体积并提高检测速度。 在自主构建的 4 200 张 WK-10 型电铲数据集上进行性能测试,实验结果表明:与
YOLOX 网络模型相比,改进后模型的平均检测精度达到了 95. 37%,提高了 1. 95%,检测速度为 46. 1 fps,提升了 8. 4 fps,模型体
积为 31. 74 MB,减少到原来的 32. 9%。 对比多种其他现存方法,所设计的目标检测算法有着精度高、体积小和速度快的优势。 相似文献
998.
云团运动的不确定性使得光伏系统输出功率较难准确估计,从而影响新能源并网的可靠性和经济性。为了有效利用卫星的云观测数据,提出了基于云图特征的超短期光伏发电功率预测模型。利用卷积神经网络对卫星云图进行特征提取,且和通过相关性分析后的4种气象特征进行融合,作为光伏发电功率预测模型输入。在此基础上,通过卷积神经网络解析这些特征之间的空间联系,并使用长短期记忆网络实现对光伏输出功率的时间序列预测。此外,考虑到一个自然日中不同时段数据对预测影响不同,引入多头注意力机制来确定关键时间点与关键特征,由此进一步提高所提模型精度。使用光伏电站实际数据以及对应的卫星云图和天气数据,对所提模型的预测效果进行验证。算例分析结果表明,该模型预测精度高且时效性好,特别对于正午辐照较大以及云团运动波动剧烈的时段,模型仍能保证较高的预测精度。 相似文献
999.
非侵入负荷辨识技术能够高效低成本地获得用户分项电能并支撑多种业务,基于分项电器能量回归的神经网络为负荷辨识技术提供了重要支撑。文中针对神经网络进行能量分解时在设备关停处的噪声识别污染及基于能量阈值法评估设备运行状态的局限性,提出了基于设备能量分解与运行状态分类的硬参数共享多任务学习模型,并根据能量回归与状态识别对输入序列全局与区域信息的敏感度差异,提出基于多感受野融合的时间卷积网络,实验结果表明文中所提算法模型在辨识效果上取得了提升,并在洗衣机、洗碗机等小功率波动设备上相较传统网络减少了50%的平均能量绝对误差。 相似文献
1000.