首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173143篇
  免费   15286篇
  国内免费   13708篇
电工技术   6620篇
技术理论   68篇
综合类   13414篇
化学工业   43340篇
金属工艺   11996篇
机械仪表   7628篇
建筑科学   19343篇
矿业工程   4466篇
能源动力   6233篇
轻工业   8355篇
水利工程   3331篇
石油天然气   6223篇
武器工业   1506篇
无线电   14843篇
一般工业技术   25231篇
冶金工业   5999篇
原子能技术   1701篇
自动化技术   21840篇
  2024年   525篇
  2023年   2982篇
  2022年   4625篇
  2021年   6365篇
  2020年   5265篇
  2019年   4701篇
  2018年   4325篇
  2017年   5202篇
  2016年   5971篇
  2015年   6261篇
  2014年   10458篇
  2013年   9991篇
  2012年   11464篇
  2011年   14105篇
  2010年   11121篇
  2009年   12258篇
  2008年   10861篇
  2007年   12550篇
  2006年   11124篇
  2005年   9539篇
  2004年   8259篇
  2003年   6905篇
  2002年   5569篇
  2001年   3973篇
  2000年   3509篇
  1999年   2744篇
  1998年   2109篇
  1997年   1671篇
  1996年   1506篇
  1995年   1237篇
  1994年   1109篇
  1993年   817篇
  1992年   645篇
  1991年   479篇
  1990年   402篇
  1989年   321篇
  1988年   207篇
  1987年   145篇
  1986年   137篇
  1985年   110篇
  1984年   99篇
  1983年   64篇
  1982年   78篇
  1981年   69篇
  1980年   61篇
  1979年   44篇
  1978年   18篇
  1977年   19篇
  1975年   15篇
  1951年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.  相似文献   
82.
通过制备不同晶相结构〔单斜相(m-ZrO_2)、四方相(t-ZrO_2)和无定型(a-ZrO_2)〕ZrO_2载体,再通过沉积沉淀法制得Cu/m-ZrO_2、Cu/t-ZrO_2和Cu/a-ZrO_2催化剂,分别用于催化二乙醇胺脱氢合成亚氨基二乙酸反应。采用XRD、氮气物理吸附脱附、XPS、H_2-TPR、CO_2-TPD对催化剂的结构进行了表征。结果表明,Cu/m-ZrO_2催化剂界面更加有利于Cu~+/Cu~0稳定存在,具有更多的碱性位点,且抗氧化性较好。在二乙醇胺脱氢反应中,Cu/m-ZrO_2催化剂性能最好,反应时间为2.5 h,亚氨基二乙酸收率为97.64%。  相似文献   
83.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
84.
85.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
86.
87.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
88.
Data fitting with B-splines is a challenging problem in reverse engineering for CAD/CAM, virtual reality, data visualization, and many other fields. It is well-known that the fitting improves greatly if knots are considered as free variables. This leads, however, to a very difficult multimodal and multivariate continuous nonlinear optimization problem, the so-called knot adjustment problem. In this context, the present paper introduces an adapted elitist clonal selection algorithm for automatic knot adjustment of B-spline curves. Given a set of noisy data points, our method determines the number and location of knots automatically in order to obtain an extremely accurate fitting of data. In addition, our method minimizes the number of parameters required for this task. Our approach performs very well and in a fully automatic way even for the cases of underlying functions requiring identical multiple knots, such as functions with discontinuities and cusps. To evaluate its performance, it has been applied to three challenging test functions, and results have been compared with those from other alternative methods based on AIS and genetic algorithms. Our experimental results show that our proposal outperforms previous approaches in terms of accuracy and flexibility. Some other issues such as the parameter tuning, the complexity of the algorithm, and the CPU runtime are also discussed.  相似文献   
89.
《工程(英文)》2020,6(10):1192-1198
There is currently an outbreak of respiratory disease caused by a novel coronavirus. The virus has been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it causes has been named coronavirus disease 2019 (COVID-19). More than 16% of patients developed acute respiratory distress syndrome, and the fatality ratio was 1%–2%. No specific treatment has been reported. Herein, we examined the effects of favipiravir (FPV) versus lopinavir (LPV)/ritonavir (RTV) for the treatment of COVID-19. Patients with laboratory-confirmed COVID-19 who received oral FPV (Day 1: 1600 mg twice daily; Days 2–14: 600 mg twice daily) plus interferon (IFN)-α by aerosol inhalation (5 million international unit (IU) twice daily) were included in the FPV arm of this study, whereas patients who were treated with LPV/RTV (Days 1–14: 400 mg/100 mg twice daily) plus IFN-α by aerosol inhalation (5 million IU twice daily) were included in the control arm. Changes in chest computed tomography (CT), viral clearance, and drug safety were compared between the two groups. For the 35 patients enrolled in the FPV arm and the 45 patients in the control arm, all baseline characteristics were comparable between the two arms. A shorter viral clearance median time was found for the FPV arm versus the control arm (4 d (interquartile range (IQR): 2.5–9) versus 11 d (IQR: 8–13), P < 0.001). The FPV arm also showed significant improvement in chest CT compared with the control arm, with an improvement rate of 91.43% versus 62.22% (P = 0.004). After adjustment for potential confounders, the FPV arm also showed a significantly higher improvement rate in chest CT. Multivariable Cox regression showed that FPV was independently associated with faster viral clearance. In addition, fewer adverse events were found in the FPV arm than in the control arm. In this open-label before-after controlled study, FPV showed better therapeutic responses on COVID-19 in terms of disease progression and viral clearance. These preliminary clinical results provide useful information of treatments for SARS-CoV-2 infection.  相似文献   
90.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号