首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6645篇
  免费   780篇
  国内免费   324篇
电工技术   211篇
综合类   356篇
化学工业   1153篇
金属工艺   843篇
机械仪表   568篇
建筑科学   152篇
矿业工程   93篇
能源动力   115篇
轻工业   217篇
水利工程   22篇
石油天然气   465篇
武器工业   58篇
无线电   1027篇
一般工业技术   786篇
冶金工业   394篇
原子能技术   196篇
自动化技术   1093篇
  2024年   41篇
  2023年   76篇
  2022年   139篇
  2021年   158篇
  2020年   174篇
  2019年   166篇
  2018年   179篇
  2017年   281篇
  2016年   283篇
  2015年   308篇
  2014年   402篇
  2013年   387篇
  2012年   499篇
  2011年   528篇
  2010年   424篇
  2009年   468篇
  2008年   422篇
  2007年   457篇
  2006年   439篇
  2005年   315篇
  2004年   232篇
  2003年   254篇
  2002年   217篇
  2001年   218篇
  2000年   158篇
  1999年   129篇
  1998年   128篇
  1997年   81篇
  1996年   51篇
  1995年   27篇
  1994年   29篇
  1993年   8篇
  1992年   22篇
  1991年   9篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有7749条查询结果,搜索用时 15 毫秒
101.
利用高温高压CO2腐蚀模拟实验以及ESEM, EDS, XPS和SEM等分析技术, 研究了4种不同含Cr量的X65管线钢的腐蚀速率、腐蚀形态和腐蚀产物膜结构特征. 结果表明: 含Cr量高的钢平均腐蚀速率小, 无Cr和含1\%Cr的钢的腐蚀形态为局部腐蚀, 含3%和5%Cr的钢的腐蚀形态为全面腐蚀. 在高温高压CO2腐蚀环境中, 含Cr钢的腐蚀产物膜为FeCO3和Cr(OH)3竞争沉积形成的多层结构, 其中1Cr-X65和3Cr-X65的腐蚀膜具有3层结构, 5Cr-X65的腐蚀膜是双层结构. Cr在腐蚀产物膜层中出现局部富集, 远高于基体中的Cr含量. 高含Cr量使腐蚀产物膜中的Cr(OH)3含量高, 并提高了腐蚀膜的保护性能, 从而引起腐蚀形态发生转变, 腐蚀速率降低. FeCO3和Cr(OH)3共沉积层膜对低铬钢的抗CO2腐蚀性能具有关键的影响.  相似文献   
102.
采用在腐蚀介质中添加Ca2+的方法,利用高温高压釜对X65钢进行了四组在不同Ca2+浓度下的腐蚀试验,测量了腐蚀速率。用扫描电镜(SEM)观察了腐蚀产物膜的微观形貌并统计了晶粒大小,对在不同Ca2+浓度下成膜的X65钢进行了电化学极化曲线和交流阻抗谱(EIS)分析。结果表明Ca2+可以吸附在基体表面,在成膜过程中加速了介质中反应物的反应速率,从而在阳极区形成阻碍Fe2+扩散的膜,使阳极极化、阳极电位升高,最终导致Ecorr升高,从而增加腐蚀产物膜的致密性。但Ca2+并没有使腐蚀机理发生变化。Ca2+浓度升高后,拟合电路中出现了Warburg阻抗,此时电化学反应主要受扩散控制。  相似文献   
103.
依据NACE标准研究了X80级管线钢的抗硫化物应力腐蚀开裂(SSCC)和氢致开裂(HIC)行为。研究表明该X80级管线钢具有较好的抗SSCC和HIC性能,其中临界名义应力Sc达到:1 265 MPa;裂纹敏感率、裂纹长度率和裂纹厚度率均为0;酸性环境下氢的扩散以及应力集中的交互作用导致材料的韧性损失,从而促使裂纹的形成和扩展,最终导致材料断裂。以均匀细小的针状铁素体为主的显微组织具有优良的抗SSCC&HIC性能。  相似文献   
104.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   
105.
Poly(ethylene‐co‐vinyl acetate) (EVA)/magnetite (Fe3O4) nanocomposite was prepared with different loading of Fe3O4 nanoparticles. The mixing and compounding were carried out on a two‐roll mixing mill and the sheets were prepared in a compression‐molding machine. The effect of loading of nanoparticles in EVA was investigated thoroughly by different characterization technique such as transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and technological properties. TEM analysis showed the uniform dispersion of filler in the polymer matrix and the dispersion of filler decreased with increase in filler content. XRD of the nanocomposite revealed the more ordered structure of the polymer chain. An appreciable increase in glass transition temperature was observed owing to the restricted mobility of Fe3O4‐filled EVA nanocomposite. TGA and flame resistance studies indicated that the composites attain better thermal and flame resistance than EVA owing to the interaction of filler and polymer segments. Mechanical properties such as tensile strength, tear resistance, and modulus were increased for composites up to 7 phr of filler, which is presumably owing to aggregation of Fe3O4 nanoparticle at higher loading. The presence of Fe3O4 nanoparticles in the polymer matrix reduced the elongation at break and impact strength while improved hardness of the composite than unfilled EVA. The change in technological properties had been correlated with the variation of polymer–filler interaction estimated from the swelling behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40116.  相似文献   
106.
A rapid, dual‐stabilization route for the production of carbon fibers from polyacrylonitrile (PAN) precursor fibers is reported. A photoinitiator, 4,4′‐bis(diethylamino)benzophenone, was added to PAN solution before the fiber wet‐spinning step. After a short UV treatment that induced cyclization and crosslinking at a lower temperature, precursor fibers could be rapidly thermo‐oxidatively stabilized and successfully carbonized. Scanning electron microscopy micrographs show no deterioration of the microstructure or hollow‐core formation in the fibers due to UV treatment or presence of photoinitiator. Fast‐thermally stabilized pure PAN‐based carbon fibers show hollow‐core fiber defects due to inadequate thermal stabilization, but such defects were not observed in carbon fibers derived from fast‐thermally stabilized fibers that contained photoinitiator and were UV treated. Tensile testing results confirm that fibers containing 1 wt % photoinitiator and UV treated for 5 min display higher tensile modulus than all other sets of thermally stabilized and carbonized fibers. Wide‐angle X‐ray diffraction results show a higher development of the aromatic structure and molecular orientation in thermally stabilized fibers. No significant increase in interplanar spacing or decrease in crystals size were observed within the UV‐stabilized carbon fibers containing photoinitiator, but such fibers retain a higher extent of molecular orientation when compared with control fibers. These results establish for the first time, the positive effect of the external addition of photoinitiator and UV treatment on the properties of the PAN‐based fibers, and may be used to reduce the precursor stabilization time for faster carbon fiber production rate. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40623.  相似文献   
107.
Pyranose–furanose mutases are essential enzymes in the life cycle of a number of microorganisms, but are absent in mammalian systems, and hence represent novel targets for drug development. To date, all such mutases show preferential recognition of a single substrate (e.g., UDP‐Gal). We report here the detailed structural characterization of the first bifunctional pyranose–furanose mutase, which recognizes both UDP‐Gal and UDP‐GalNAc. The enzyme under investigation (cjUNGM) is involved in the biosynthesis of capsular polysaccharides (CPSs) in Campylobacter jejuni 11168. These CPSs are known virulence factors that are required for adhesion and invasion of human epithelial cells. Using a combination of UV/visible spectroscopy, X‐ray crystallography, saturation transfer difference NMR spectroscopy, molecular dynamics and CORCEMA‐ST calculations, we have characterized the binding of the enzyme to both UDP‐Galp and UDP‐GalpNAc, and compared these interactions with those of a homologous monofunctional mutase enzyme from E. coli (ecUGM). These studies reveal that two arginines in cjUNGM, Arg59 and Arg168, play critical roles in the catalytic mechanism of the enzyme and in controlling its specificity to ultimately lead to a GalfNAc‐containing CPS. In ecUGM, these arginines are replaced with histidine and lysine, respectively, and this results in an enzyme that is selective for UDP‐Gal. We propose that these changes in amino acids allow C. jejuni 11168 to produce suitable quantities of the sugar nucleotide substrate required for the assembly of a CPS containing GalfNAc, which is essential for viability.  相似文献   
108.
The application of a rapid screening method for the construction of ternary phase diagrams is described for the first time, providing detailed visualization of phase boundaries in solvent‐mediated blends. Our new approach rapidly identifies ternary blend compositions that afford optically clear materials, useful for applications where transparent films are necessary. The use of 96‐well plates and a scanning plate reader has enabled rapid optical characterization to be carried out by transmission spectrophotometry (450 nm), whilst the nature and extent of crystallinity was examined subsequently by wide angle X‐ray scattering (WAXS). The moderating effect of cellulose acetate butyrate can be visualized as driving the position of the phase boundaries in poly(l ‐lactic acid)/polycaprolactone (PLLA/PCL) blends. More surprisingly, the boundaries are critically dependent on the molecular weight of the crystallizable PLLA and PCL, with higher molecular weight polymers leading to blends with reduced phase separation. On the other hand, the propensity to crystallize was more evident in shorter chains. WAXS provides a convenient way of characterizing the contribution of the individual blend components to the crystalline regions across the range of blend compositions.© 2013 Society of Chemical Industry  相似文献   
109.
A comprehensive quantitative study on the effect of liquid viscosity (1 ≤ µL ≤ 1149 mPa‐s) on the local flow phenomena of the gas phase in a small diameter bubble column is performed using ultrafast electron beam X‐ray tomography. The internal dynamic flow structure and the bubble size distribution shows a dual role of the liquid viscosity on the hydrodynamics. Further, the effect of solid concentration (Cs = 0.05, 0.20) on the local flow behavior of the gas phase is studied for the pseudo slurry viscosities similar to the liquid viscosities of the gas–liquid systems. The effects of liquid and pseudo slurry viscosities on flow structure, bubble size distribution, and gas phase distribution are compared. The bubble coalescence is significantly enhanced with the addition of particles as compared to the system without particles for apparently same viscosity. The superficial gas velocity at which transition from homogeneous bubbly to slug flow regime occurs is initiated by the addition of particles as compared to the particle free system for apparently same viscosity. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3079–3090, 2014  相似文献   
110.
Two types of poly(ethylene terephthalate) (PET) copolyesters were successfully prepared with sodium‐5‐sulfo‐bis‐(hydroxyethyl)‐isophthalate (SIPE) and poly(ethylene glycol) (PEG) units with different molecular weights named as cationic dyeable polyester and easy cationic dyeable polyester. Their chemical and crystalline structures were characterized by the nuclear magnetic resonance (NMR), wide angle X‐ray diffraction (WAXD), and small angle X‐ray scattering measurement, and their thermal properties were tested by differential scanning calorimetry and thermogravimetric analysis, respectively. NMR experimental results showed that the actual molar ratio of comonomers was basically consistent with the correlative feed ratio. WAXD results indicated that the crystalline structures of prepared copolyesters were similar to that of PET. Moreover, the glass transition temperature, melting temperature, and thermal degradation temperature were found to decrease with the reduction of the of PEG units as the incorporation of lower of PEG units brought more ether bonds into molecular chains, which increased the irregularity of molecular chain arrangement and led to lower crystallinity. In addition, because the incorporation of PEG units with lower molecular weight led to more ether bonds and hydroxyl end‐groups in molecular chains, the value of contact angle of PET copolyesters dropped, manifesting PET copolyesters had better hydrophilicity with the decreasing molecular weight of PEG units.© 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39823.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号