首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150365篇
  免费   21136篇
  国内免费   15701篇
电工技术   11988篇
技术理论   9篇
综合类   18949篇
化学工业   11442篇
金属工艺   4392篇
机械仪表   9935篇
建筑科学   13941篇
矿业工程   13409篇
能源动力   6405篇
轻工业   4322篇
水利工程   8668篇
石油天然气   7225篇
武器工业   2028篇
无线电   11421篇
一般工业技术   11674篇
冶金工业   5567篇
原子能技术   1330篇
自动化技术   44497篇
  2024年   571篇
  2023年   2137篇
  2022年   4330篇
  2021年   5270篇
  2020年   5715篇
  2019年   4773篇
  2018年   4531篇
  2017年   5534篇
  2016年   6429篇
  2015年   6823篇
  2014年   9429篇
  2013年   9728篇
  2012年   11463篇
  2011年   12140篇
  2010年   9544篇
  2009年   10006篇
  2008年   10155篇
  2007年   11290篇
  2006年   9798篇
  2005年   8563篇
  2004年   6969篇
  2003年   6161篇
  2002年   4693篇
  2001年   3817篇
  2000年   3319篇
  1999年   2499篇
  1998年   2087篇
  1997年   1678篇
  1996年   1564篇
  1995年   1366篇
  1994年   1120篇
  1993年   803篇
  1992年   661篇
  1991年   519篇
  1990年   393篇
  1989年   331篇
  1988年   210篇
  1987年   135篇
  1986年   103篇
  1985年   99篇
  1984年   104篇
  1983年   48篇
  1982年   66篇
  1981年   35篇
  1980年   48篇
  1979年   48篇
  1978年   16篇
  1974年   9篇
  1959年   17篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
As a highly complex and time-varying process, gas-water two-phase flow is commonly encountered in industries. It has a variety of typical flow states and transition flow states. Accurate identification and monitoring of flow states is not only beneficial to further study of two-phase flow but also helpful for stable operation and economic efficiency of process industry. Combining canonical variate analysis (CVA) and Gaussian mixture model (GMM), a strategy called multi-CVA-GMM is proposed for flow state monitoring in gas-water two-phase flow. CVA is used to extract flow state features from the perspective of correlation between historical data and future data, which solves the cross correlation and temporal correlation of multi-sensor measurement data. GMM calculates the possibility that the current flow state belongs to each typical flow pattern and judges the current flow state by probability indicators. It is conducive to follow-up use of Bayesian inference probability and Mahalanobis distance-based (BID) indicator for flow state monitoring, which avoids repeated traversal of multiple CVA-GMM models and improves the efficiency of the monitoring process. The probability indicators can also be used to analyze transition flow states. The method combining the probabilistic idea of GMM with the deterministic idea of multimodal modeling can accurately identify the current flow state and effectively monitor the evolution of flow state. The multi-CVA-GMM method is validated by using the measured data of the horizontal flow loop of gas-water two-phase flow experimental facility, and its effectiveness is proved.  相似文献   
82.
83.
Enhanced gravity concentrators such as Knelson concentrator (KC) are extensively used in the mineral processing industry. The complexities of KC bowl geometry and variation of feed characteristics have forced process engineers to design empirically new units using laboratory and pilot-scale Knelson concentrators. However, numerical modelling methods such as computational fluid dynamics (CFD) and discrete element method (DEM) provide a better insight of flow behaviour of fluid and particulate solid phases inside these processing units. This article reports findings of CFD simulations for single-phase water flow inside the laboratory KC. An available standard 7.5-cm laboratory KC bowl was numerically simulated using realisable k-ε turbulence model to resolve the turbulence dispersion of existing transitional flow regime. The effects of relative centrifugal force (RCF) intensity and bed fluidisation water flow rate on the water velocity and pressure distributions were studied. Simulations confirmed the swirling flow pattern governing inside the bowl. The results revealed that the impact of RCF intensity on the water field values is greater than that of bed fluidisation water flow rate. Both velocity and pressure variations inside the bowl rings followed a linear trend.  相似文献   
84.
The case-based learning (CBL) approach has gained attention in medical education as an alternative to traditional learning methodology. However, current CBL systems do not facilitate and provide computer-based domain knowledge to medical students for solving real-world clinical cases during CBL practice. To automate CBL, clinical documents are beneficial for constructing domain knowledge. In the literature, most systems and methodologies require a knowledge engineer to construct machine-readable knowledge. Keeping in view these facts, we present a knowledge construction methodology (KCM-CD) to construct domain knowledge ontology (i.e., structured declarative knowledge) from unstructured text in a systematic way using artificial intelligence techniques, with minimum intervention from a knowledge engineer. To utilize the strength of humans and computers, and to realize the KCM-CD methodology, an interactive case-based learning system(iCBLS) was developed. Finally, the developed ontological model was evaluated to evaluate the quality of domain knowledge in terms of coherence measure. The results showed that the overall domain model has positive coherence values, indicating that all words in each branch of the domain ontology are correlated with each other and the quality of the developed model is acceptable.  相似文献   
85.
This paper presents a model of shell and tube evaporator with micro-fin tubes using R1234yf and R134a. The model developed for this evaporator uses the ε-NTU method to predict the evaporating pressure, the refrigerant outlet enthalpy and the outlet temperature of the secondary fluid. The model accuracy is evaluated using different two-phase flow boiling correlations for micro-fin tubes and comparing predicted and experimental data. The experimental tests were carried out for a wide range of operating conditions using R134a and R1234yf as working fluids. The predicted parameter with maximum deviations, between the predicted and experimental data, is the evaporating pressure. The correlation of Akhavan– Behabadi et al. was used to predict flow boiling heat transfer, with an error on cooling capacity prediction below 5%. Simulations, carried out with this validated model, show that the overall heat transfer coefficient of R1234yf has a maximum decrease of 10% compared with R134a.  相似文献   
86.
Human mobility prediction is of great advantage in route planning and schedule management. However, mobility data is a high-dimensional dataset in which multi-context prediction is difficult in a single model. Mobility data can usually be expressed as a home event, a work event, a shopping event and a traveling event. Previous works have only been able to learn and predict one type of mobility event and then integrate them. As the tensor model has a strong ability to describe high-dimensional information, we propose an algorithm to predict human mobility in tensors of location context data. Using the tensor decomposition method, we extract human mobility patterns with multiple expressions and then synthesize the future mobility event based on mobility patterns. The experiment is based on real-world location data and the results show that the tensor decomposition method has the highest accuracy in terms of prediction error among the three methods. The results also prove the feasibility of our multi-context prediction model.  相似文献   
87.
A novel multichannel reactor with a bifurcation inlet manifold, a rectangular outlet manifold, and sixteen parallel minichannels with commercial CuO/ZnO/Al2O3 catalyst for methanol steam reforming was numerically investigated in this paper. A three-dimensional numerical model was established to study the heat and mass transfer characteristics as well as the chemical reaction rates. The numerical model adopted the triple rate kinetic model of methanol steam reforming which can accurately calculate the consumption and generation of each species in the reactor. The effects of steam to carbon molar ratio, weight hourly space velocity, operating temperature and catalyst layer thickness on the methanol steam reforming performance were evaluated and discussed. The distributions of temperature, velocity, species concentration, and reaction rates in the reactor were obtained and analyzed to explain the mechanisms of different effects. It is suggested that the operating temperature of 548 K, steam to carbon ratio of 1.3, and weight hourly space velocity of 0.67 h−1 are recommended operating conditions for methanol steam reforming by the novel multichannel reactor with catalyst fully packed in the parallel minichannels.  相似文献   
88.
苏里格气田是中国典型的致密砂岩气藏,构造简单、平缓,横向非均质性强,有效储层与围岩声学特征差别小,地震响应不明显,常规地震监测方法预测难度大,但气田含气砂岩泊松比低,是地震气藏检测的有效参数。利用弹性全波形反演精度高和能处理复杂非均质介质的优势,反演地层拉梅常数、剪切模量和密度,并计算泊松比,从而进行气藏预测。重点阐述了苏里格气田多分量数据全波形反演初始模型建模、先验模型建模和地震数据预处理3个关键问题的处理方法。二维三分量数据反演和"甜点"预测结果表明:①对于具有强非均质性的苏里格气田,利用全波形反演获得精度较高的地层弹性参数能显著提高气藏预测的准确度;②苏里格地区构造简单、平缓,利用常规叠加速度并结合构造解释可以建立比较好的初始模型,从而有效地解决了周波跳跃和局部极小的难题;③先验知识的约束和地震数据的预处理是全波形反演成功应用于苏里格气田气藏检测的关键。  相似文献   
89.
The identification rate of UHF RFID system was restricted by multipath propagation effects.The system identification performance was studied considering the correlation coefficient between forward and reverse channels.Based on the generalized Rician fading channel model,the analytical expression of identification rate was derived under independent,full correlation and correlation cases.Compared with the existing analysis,the proposed uniform calculation formula of identification rate was for any correlation coefficient and kinds of channel conditions.The numerical computation and Monte-carlo simulations show that the influences of different correlation coefficients,channel conditions,sensitivity and distance on the identification rate.  相似文献   
90.
In this research, the three‐dimensional structural and colorimetric modeling of three‐dimensional woven fabrics was conducted for accurate color predictions. One‐hundred forty single‐ and double‐layered woven samples in a wide range of colors were produced. With the consideration of their three‐dimensional structural parameters, three‐dimensional color prediction models, K/S‐, R‐, and L*a*b*‐based models, were developed through the optimization of previous two‐dimensional models which have been reported to be the three most accurate models for single‐layered woven structures. The accuracy of the new three‐dimensional models was evaluated by calculating the color differences ΔL*, ΔC*, Δh°, and ΔECMC(2:1) between the measured and the predicted colors of the samples, and then the error values were compared to those of the two‐dimensional models. As a result, there has been an overall improvement in color predictions of all models with a decrease in ΔECMC(2:1) from 10.30 to 5.25 units on average after the three‐dimensional modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号