首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1213篇
  免费   113篇
  国内免费   90篇
电工技术   63篇
综合类   146篇
化学工业   19篇
金属工艺   5篇
机械仪表   60篇
建筑科学   13篇
矿业工程   2篇
能源动力   15篇
轻工业   26篇
水利工程   9篇
石油天然气   11篇
武器工业   6篇
无线电   211篇
一般工业技术   182篇
冶金工业   3篇
原子能技术   13篇
自动化技术   632篇
  2024年   5篇
  2023年   13篇
  2022年   15篇
  2021年   14篇
  2020年   26篇
  2019年   39篇
  2018年   47篇
  2017年   35篇
  2016年   33篇
  2015年   39篇
  2014年   48篇
  2013年   87篇
  2012年   116篇
  2011年   100篇
  2010年   51篇
  2009年   71篇
  2008年   68篇
  2007年   68篇
  2006年   68篇
  2005年   48篇
  2004年   47篇
  2003年   41篇
  2002年   33篇
  2001年   26篇
  2000年   25篇
  1999年   27篇
  1998年   28篇
  1997年   27篇
  1996年   15篇
  1995年   19篇
  1994年   22篇
  1993年   20篇
  1992年   21篇
  1991年   10篇
  1990年   11篇
  1989年   12篇
  1988年   4篇
  1987年   8篇
  1986年   8篇
  1985年   1篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1416条查询结果,搜索用时 15 毫秒
51.
A new method for the numerical solution of non linear parabolic equations is presented. The method is an extension of an existing algorithm for linear equations. Solutions are obtained in the form of a Chebyshev series, which is produced by approximating the partial differential equation by a set of ordinary differential equations over a small time interval. The method appears to be both accurate and economical.  相似文献   
52.
A method of numerical solution of singular integral equations of the first kind with logarithmic singularities in their kernels along the integration interval is proposed. This method is based on the reduction of these equations to equivalent singular integral equations with Cauchy-type singularities in their kernels and the application to the latter of the methods of numerical solution, based on the use of an appropriate numerical integration rule for the reduction to a system of linear algebraic equations. The aforementioned method is presented in two forms giving slightly different numerical results. Furthermore, numerical applications of the proposed methods are made. Some further possibilities are finally investigated  相似文献   
53.
A Taylor collocation method is presented for numerically solving the system of high-order linear Fredholm–Volterra integro-differential equations in terms of Taylor polynomials. Using the Taylor collocations points, the method transforms the system of linear integro-differential equations (IDEs) and the given conditions into a matrix equation in the unknown Taylor coefficients. The Taylor coefficients can be found easily, and hence the Taylor polynomial approach can be applied. This method is also valid for the systems of differential and integral equations. Numerical examples are presented to illusturate the accuracy of the method. The symbolic algebra program Maple is used to prove the results.  相似文献   
54.
《国际计算机数学杂志》2012,89(8):1453-1472
In this paper, we develop a general approach for estimating and bounding the error committed when higher-order ordinary differential equations (ODEs) are approximated by means of the coefficients perturbation methods. This class of methods was specially devised for the solution of Schrödinger equation by Ixaru in 1984. The basic principle of perturbation methods is to find the exact solution of an approximation problem obtained from the original one by perturbing the coefficients of the ODE, as well as any supplementary condition associated to it. Recently, the first author obtained practical formulae for calculating tight error bounds for the perturbation methods when this technique is applied to second-order ODEs. This paper extends those results to the case of differential equations of arbitrary order, subjected to some specified initial or boundary conditions. The results of this paper apply to any perturbation-based numerical technique such as the segmented Tau method, piecewise collocation, Constant and Linear perturbation. We will focus on the Tau method and present numerical examples that illustrate the accuracy of our results.  相似文献   
55.
This paper presents a Chebyshev series method for the numerical solutions of system of the first kind Cauchy type singular integral equation (SIE). The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density functions. It is shown that the numerical solution of system of characteristic SIEs is identical to the exact solution when the force functions are cubic functions.  相似文献   
56.
In this article, we study some fundamental results concerning the convergence of the Adomian decomposition method (ADM) for an abstract Cauchy problem of a system of first-order nonlinear differential equations. Under certain conditions, we obtain upper estimates for the norm of solutions of this system. We also obtain results about the error estimates for the approximate solutions by the ADM and discuss their applications.  相似文献   
57.
58.
59.
In a recent paper, an error estimate of a one-step numerical method, originated from the Lanczos tau method, for initial value problems for first order linear ordinary differential equations with polynomial coefficients, was obtained, based on the error of the Lanczos econo-mization process. Numerical results then revealed that the estimate gives, correctly, the order of the tau approximant being sought. In the present paper we further establish that the error estimate is optimum with respect to the integration of the error equation. Numerical examples are included for completeness.  相似文献   
60.
In this paper, the Chebyshev matrix method is applied generalisations of the Hermite, Laguerre, Legendre and Chebyshev differential equations which have polynomial solution. The method is based on taking the truncated Chebyshev series expansions of the functions in equation, and then substituting their matrix forms into the result equation. Thereby the given equation reduces to a matrix equation, which corresponds to a system of linear algebraic equations with unknown Chebyshev coefficients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号