首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34615篇
  免费   3175篇
  国内免费   1608篇
电工技术   2708篇
技术理论   3篇
综合类   2530篇
化学工业   2000篇
金属工艺   1890篇
机械仪表   5162篇
建筑科学   1474篇
矿业工程   746篇
能源动力   655篇
轻工业   738篇
水利工程   483篇
石油天然气   622篇
武器工业   485篇
无线电   3919篇
一般工业技术   3598篇
冶金工业   938篇
原子能技术   252篇
自动化技术   11195篇
  2024年   155篇
  2023年   629篇
  2022年   871篇
  2021年   1211篇
  2020年   1132篇
  2019年   904篇
  2018年   729篇
  2017年   1008篇
  2016年   1007篇
  2015年   1056篇
  2014年   1867篇
  2013年   2242篇
  2012年   2005篇
  2011年   2323篇
  2010年   1693篇
  2009年   1633篇
  2008年   1649篇
  2007年   2035篇
  2006年   1924篇
  2005年   1696篇
  2004年   1525篇
  2003年   1503篇
  2002年   1282篇
  2001年   1122篇
  2000年   1012篇
  1999年   890篇
  1998年   809篇
  1997年   623篇
  1996年   580篇
  1995年   454篇
  1994年   312篇
  1993年   297篇
  1992年   222篇
  1991年   181篇
  1990年   121篇
  1989年   99篇
  1988年   121篇
  1987年   50篇
  1986年   69篇
  1985年   82篇
  1984年   70篇
  1983年   50篇
  1982年   31篇
  1981年   32篇
  1980年   21篇
  1979年   18篇
  1978年   8篇
  1977年   11篇
  1976年   10篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
In this paper, the dynamic behaviors on the basis of simulation for high-purity heat integrated air separation column (HIASC) are studied. A nonlinear generic model control (GMC) scheme is proposed based on the nonlinear behavior analyses of a HIASC process, and an adaptive generic model control (AGMC) scheme is further presented to correct the model parameters online. Related internal model control (IMC) scheme and multi-loop PID (M-PID) scheme are also developed as the comparative base. The comparative researches are carried out among these linear and nonlinear control schemes in detail. The simulation research results show that the proposed AGMC schemes present advantages in both servo control and regulatory control for the high-purity HIASC.  相似文献   
12.
Water electrolysis is a process that can produce hydrogen in a clean way when renewable energy sources are used. This allows managing large renewable surpluses and transferring this energy to other sectors, such as industry or transport. Among the electrolytic technologies to produce hydrogen, proton exchange membrane (PEM) electrolysis is a promising alternative. One of the main components of PEM electrolysis cells are the bipolar plates, which are machined with a series of flow distribution channels, largely responsible for their performance and durability. In this work, AISI 316L stainless steel bipolar plates have been built by additive manufacturing (AM), using laser powder bed fusion (PBF-L) technology. These bipolar plates were subjected to ex-situ corrosion tests and assembled in an electrolysis cell to evaluate the polarization curve. Furthermore, the obtained results were compared with bipolar plates manufactured by conventional machining processes (MEC). The obtained experimental results are very similar for both manufacturing methods. This demonstrates the viability of the PBF-L technology to produce metal bipolar plates for PEM electrolyzers and opens the possibilities to design new and more complex flow distribution channels and to test these designs in initial phases before scaling them to larger surfaces.  相似文献   
13.
This work intends to develop an online experimental system for screening of deoxynivalenol (DON) contamination in whole wheat meals by visible/near-infrared (Vis/NIR) spectroscopy and computer vision coupling technology. Spectral and image information of samples with various DON levels was collected at speed of 0.15 m s−1 on a conveyor belt. The two-type data were then integrated and subjected to chemometric analysis. Discriminant analysis showed that samples could be classified by setting 1000 μg kg−1 as the cut-off value. The best correct classified rate obtained in prediction was 93.55% based on fusion of spectral and image features, with reduced prediction uncertainty as compared to single feature. However, quantification of DON by quantitative analysis was not successful due to poor model performance. These results indicate that, although not accurate enough to provide conclusive result, this coupling technology could be adopted for rapid screening of DON contamination in cereals and feeds during processing.  相似文献   
14.
Technical ceramics exhibit exceptional high-temperature properties, but unfortunately their extreme crack sensitivity and high melting point make it challenging to manufacture geometrically complex structures with sufficient strength and toughness. Emerging additive manufacturing technologies enable the fabrication of large-scale complex-shape artifacts with architected internal topology; when such topology can be arranged at the microscale, the defect population can be controlled, thus improving the strength of the material. Here, ceramic micro-architected materials are fabricated using direct ink writing (DIW) of an alumina nanoparticle-loaded ink, followed by sintering. After characterizing the rheology of the ink and extracting optimal processing parameters, the microstructure of the sintered structures is investigated to assess composition, density, grain size and defect population. Mechanical experiments reveal that woodpile architected materials with relative densities of 0.38–0.73 exhibit higher strength and damage tolerance than fully dense ceramics printed under identical conditions, an intriguing feature that can be attributed to topological toughening.  相似文献   
15.
16.
西藏江达县白格村金沙江右岸于2018年10月11日和2018年11月3日先后发生2次大规模滑坡—堰塞湖堵江事件,溃堰洪水对下游拉哇库区不良地质体的稳定性造成不同程度的影响。为保障下游水电站建设安全,对拉哇库区主要不良地质体建立了基于星载InSAR技术、无人机技术和地面传感器实时监测的“天空地”一体化监测预警体系,以多维空间采集技术获取变形信息,通过智能监控平台对信息及时进行处理、分析和可视化呈现,利用平台、短信等方式向相关人员进行分级告警,取得了较好的应用效果。  相似文献   
17.
The COVID-19 pandemic has disrupted the supply chain for personal protective equipment (PPE) for medical professionals, including N95-type respiratory protective masks. To address this shortage, many have looked to the agility and accessibility of additive manufacturing (AM) systems to provide a democratized, decentralized solution to producing respirators with equivalent protection for last-resort measures. However, there are concerns about the viability and safety in deploying this localized download, print, and wear strategy due to a lack of commensurate quality assurance processes. Many open-source respirator designs for AM indicate that they do not provide N95-equivalent protection (filtering 95% of SARS-CoV-2 particles) because they have either not passed aerosol generation tests or not been tested. Few studies have quantified particle transmission through respirator designs outside of the filter medium. This is concerning because several polymer-based AM processes produce porous parts, and inherent process variation between printers and materials also threaten the integrity of tolerances and seals within the printed respirator assembly. No study has isolated these failure mechanisms specifically for respirators. The goal of this paper is to measure particle transmission through printed respirators of different designs, materials, and AM processes. The authors compare the performance of printed respirators to N95 respirators and cloth masks. Respirators in this study printed using desktop- and industrial-scale fused filament fabrication processes and industrial-scale powder bed fusion processes were not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection. Even while assuming a perfect seal between the respirator and the user’s face, although a few respirators provided >90% efficiency at the 100−300 nm particle range, almost all printed respirators provided <60% filtration efficiency. Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but the printed respirators showed similar performance to various cloth masks. The authors further explore the process-driven aspects leading to low filtration efficiency. Although the design/printer/material combination dictates the AM respirator performance, the identified failure modes originate from system-level constraints and are therefore generalizable across multiple AM processes. Quantifying the limitations of AM in producing N95-type respiratory protective masks advances understanding of AM systems toward the development of better part and machine designs to meet the needs of reliable, functional, end-use parts.  相似文献   
18.
《Microelectronics Journal》2015,46(11):1012-1019
This paper presents a voltage reference generator architecture and two different realizations of it that have been fabricated within a standard 0.18 μm CMOS technology. The architecture takes the advantage of utilizing a sampled-data amplifier (SDA) to optimize the power consumption. The circuits achieve output voltages on the order of 190 mV with temperature coefficients of 43 ppm/°C and 52.5 ppm/°C over the temperature range of 0 to 120°C without any trimming with a 0.8 V single supply. The power consumptions of the circuits are less then 500 nW while occupying an area of 0.2 mm2 and 0.08 mm2, respectively.  相似文献   
19.
A Distributed Virtual Environment (DVE) system offers a computer-generated virtual world in which individuals located at different places in the physical world can interact with one another. In order to achieve real-time response for a large user base, DVE systems need to have a scalable architecture. In this paper, we present the design of a grid-enabled service oriented framework for facilitating the construction of scalable DVE systems on computing grids. A service component called “gamelet” is proposed, whose distinctive mark is its high mobility for supporting dynamic load sharing. We propose a gamelet migration protocol which can ensure the transparency and efficiency of gamelet migration, and an adaptive gamelet load-balancing (AGLB) algorithm for making gamelet redistribution decisions at runtime. The algorithm considers both the synchronization costs of the DVE system and network latencies inherent in the grid nodes. The activities of the users and the heterogeneity of grid resources are also considered in order to carry out load sharing more effectively. We evaluate the performance of the proposed mechanisms through a multiplayer online game prototype implemented using the Globus toolkit. The results show that our approach can achieve faster response times and higher throughputs than some existing approaches. This research is supported in part by the China National Grid project (863 program) and the HKU Foundation Seed Grant 28506002.  相似文献   
20.
In this paper, we consider an integrated Resource Selection and Operation Sequences (iRS/OS) problem in Intelligent Manufacturing System (IMS). Several kinds of objectives are taken into account, in which the makespan for orders should be minimized; workloads among machine tools should be balanced; the total transition times between machines in a local plant should also be minimized. To solve this multiobjective iRS/OS model, a new two vectors-based coding approach has been proposed to improve the efficiency by designing a chromosome containing two kinds of information, i.e., operation sequences and machine selection. Using such kind of chromosome, we adapt multistage operation-based Genetic Algorithm (moGA) to find the Pareto optimal solutions. Moreover a special technique called left-shift hillclimber has been used as one kind of local search to improve the efficiency of our algorithm. Finally, the experimental results of several iRS/OS problems indicate that our proposed approach can obtain best solutions. Further more comparing with previous approaches, moGA performs better for finding Pareto solutions. Received: May 2005/Accepted: December 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号