首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32644篇
  免费   2365篇
  国内免费   1820篇
电工技术   1309篇
技术理论   1篇
综合类   1709篇
化学工业   12343篇
金属工艺   1732篇
机械仪表   947篇
建筑科学   1037篇
矿业工程   401篇
能源动力   690篇
轻工业   4686篇
水利工程   366篇
石油天然气   2036篇
武器工业   231篇
无线电   2586篇
一般工业技术   2434篇
冶金工业   889篇
原子能技术   493篇
自动化技术   2939篇
  2024年   82篇
  2023年   489篇
  2022年   2205篇
  2021年   2218篇
  2020年   842篇
  2019年   777篇
  2018年   743篇
  2017年   887篇
  2016年   1109篇
  2015年   1190篇
  2014年   1602篇
  2013年   1804篇
  2012年   2013篇
  2011年   2422篇
  2010年   1679篇
  2009年   1880篇
  2008年   1747篇
  2007年   1872篇
  2006年   1746篇
  2005年   1406篇
  2004年   1191篇
  2003年   1036篇
  2002年   890篇
  2001年   708篇
  2000年   599篇
  1999年   555篇
  1998年   423篇
  1997年   397篇
  1996年   376篇
  1995年   354篇
  1994年   307篇
  1993年   205篇
  1992年   173篇
  1991年   147篇
  1990年   133篇
  1989年   101篇
  1988年   78篇
  1987年   49篇
  1986年   71篇
  1985年   46篇
  1984年   48篇
  1983年   31篇
  1982年   36篇
  1981年   30篇
  1980年   32篇
  1979年   34篇
  1978年   14篇
  1977年   11篇
  1976年   10篇
  1975年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Congenital cataract is the leading cause of blindness among children worldwide. Patients with posterior subcapsular congenital cataract (PSC) in the central visual axis can result in worsening vision and stimulus deprivation amblyopia. However, the pathogenesis of PSC remains unclear. This study aims to explore the functional regulation and mechanism of HTRA1 in human lens epithelial cells (HLECs). HTRA1 was significantly downregulated in the lens capsules of children with PSC compared to normal controls. HTRA1 is a suppression factor of transforming growth factor-β (TGF-β) signalling pathway, which plays a key role in cataract formation. The results showed that the TGF-β/Smad signalling pathway was activated in the lens tissue of PSC. The effect of HTRA1 on cell proliferation, migration and apoptosis was measured in HLECs. In primary HLECs, the downregulation of HTRA1 can promote the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway and can significantly upregulate the TGF-β/Smad downstream target genes FN1 and α-SMA. HTRA1 was also knocked out in the eyes of C57BL/6J mice via adeno-associated virus-mediated RNA interference. The results showed that HTRA1 knockout can significantly upregulate p-Smad2/3 and activate the TGF-β/Smad signalling pathway, resulting in abnormal proliferation and irregular arrangement of lens epithelial cells and leading to the occurrence of subcapsular cataract. To conclude, HTRA1 was significantly downregulated in children with PSC, and the downregulation of HTRA1 enhanced the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway, which led to the occurrence of PSC.  相似文献   
992.
The multidrug transporter ABCB1 (MDR1, Pgp) plays an important role in the absorption, distribution, metabolism, and elimination of a wide range of pharmaceutical compounds. Functional investigation of the ABCB1 expression is also essential in many diseases, including drug-resistant cancer, inflammatory conditions, or Alzheimer disease. In this study, we examined the potential interaction of the ABCB1 multidrug transporter with a group of commercially available viability dyes that are generally considered not to penetrate into intact cells. Here, we demonstrate that the slow cellular accumulation of TO-PRO™-1 (TP1) or TO-PRO™-3 (TP3) was strongly inhibited by ABCB1-dependent dye extrusion. TP1/3 dye accumulation was not affected by the presence of ABCC1 or ABCG2, while this uptake was increased to the level in the ABCB1-negative cells by a specific P-glycoprotein inhibitor, Tariquidar. We suggest that TP compounds can be used as highly sensitive, selective, non-toxic, and stable dyes to examine the functional expression and properties of the ABCB1 multidrug transporter, especially in microplate-based high-throughput flow cytometry assays. In addition, we demonstrate the applicability of the TP dyes to efficiently select and separate even a very low number of Pgp-expressing intact cells.  相似文献   
993.
Aquaporin-1 (AQP1), a water channel, and the hypoxia-inducible factor 1α (HIF1A) are implicated in acute lung injury responses, modulating among others pulmonary vascular leakage. We hypothesized that the AQP1 and HIF1A systems interact, affecting mRNA, protein levels and function of AQP1 in human pulmonary microvascular endothelial cells (HPMECs) exposed to lipopolysaccharide (LPS). Moreover, the role of AQP1 in apoptosis and wound healing progression was examined. Both AQP1 mRNA and protein expression levels were higher in HPMECs exposed to LPS compared to untreated HPMECs. However, in the LPS-exposed HIF1A-silenced cells, the mRNA and protein expression levels of AQP1 remained unaltered. In the permeability experiments, a statistically significant volume increase was observed at the 360 s time-point in the LPS-exposed HPMECs, while LPS-exposed HIF1A-silenced HPMECs did not exhibit cell swelling, implying a dysfunctional AQP1. AQP1 did not seem to affect cell apoptosis yet could interfere with endothelial migration and/or proliferation. Based on our results, it seems that HIF1A silencing negatively affects AQP1 mRNA and protein expression, as well as AQP1 function, in the setting of lung injury.  相似文献   
994.
Inflammation plays an important role in the innate immune response, yet overproduction of inflammation can lead to a variety of chronic diseases associated with the innate immune system; therefore, modulation of the excessive inflammatory response has been considered a major strategy in the treatment of inflammatory diseases. Activation of the ROS/NLRP3/IL-1β signaling axis has been suggested to be a key initiating phase of inflammation. Our previous study found that microbe-derived antioxidants (MA) are shown to have excellent antioxidant and anti-inflammatory properties; however, the mechanism of action of MA remains unclear. The current study aims to investigate whether MA could protect cells from LPS-induced oxidative stress and inflammatory responses by modulating the Nrf2-ROS-NLRP3-IL-1β signaling pathway. In this study, we find that MA treatment significantly alleviates LPS-induced oxidative stress and inflammatory responses in RAW264.7 cells. MA significantly reduce the accumulation of ROS in RAW264.7 cells, down-regulate the levels of pro-inflammatory factors (TNF-α and IL-6), inhibit NLRP3, ASC, caspase-1 mRNA, and protein levels, and reduce the mRNA, protein levels, and content of inflammatory factors (IL-1β and IL-18). The protective effect of MA is significantly reduced after the siRNA knockdown of the NLRP3 gene, presumably related to the ability of MA to inhibit the ROS-NLRP3-IL-1β signaling pathway. MA is able to reduce the accumulation of ROS and alleviate oxidative stress by increasing the content of antioxidant enzymes, such as SOD, GSH-Px, and CAT. The protective effect of MA may be due to its ability of MA to induce Nrf2 to enter the nucleus and initiate the expression of antioxidant enzymes. The antioxidant properties of MA are further enhanced in the presence of the Nrf2 activator SFN. After the siRNA knockdown of the Nrf2 gene, the antioxidant and anti-inflammatory properties of MA are significantly affected. These findings suggest that MA may inhibit the LPS-stimulated ROS/NLRP3/IL-1β signaling axis by activating Nrf2-antioxidant signaling in RAW264.7 cells. As a result of this study, MA has been found to alleviate inflammatory responses and holds promise as a therapeutic agent for inflammation-related diseases.  相似文献   
995.
The epicardium is a single cell layer of mesothelial cells that plays a critical role during heart development contributing to different cardiac cell types of the developing heart through epithelial-to-mesenchymal transition (EMT). Moreover, the epicardium is a source of secreted growth factors that promote myocardial growth. CCBE1 is a secreted extracellular matrix protein expressed by epicardial cells that is required for the formation of the primitive coronary plexus. However, the role of CCBE1 during epicardial development was still unknown. Here, using a Ccbe1 knockout (KO) mouse model, we observed that loss of CCBE1 leads to congenital heart defects including thinner and hyper-trabeculated ventricular myocardium. In addition, Ccbe1 mutant hearts displayed reduced proliferation of cardiomyocyte and epicardial cells. Epicardial outgrowth culture assay to assess epicardial-derived cells (EPDC) migration showed reduced invasion of the collagen gel by EPDCs in Ccbe1 KO epicardial explants. Ccbe1 KO hearts also displayed fewer nonmyocyte/nonendothelial cells intramyocardially with a reduced proliferation rate. Additionally, RNA-seq data and experimental validation by qRT-PCR showed a marked deregulation of EMT-related genes in developing Ccbe1 mutant hearts. Together, these findings indicate that the myocardium defects in Ccbe1 KO mice arise from disruption of epicardial development and function.  相似文献   
996.
997.
Precision oncology and immunotherapy have revolutionized the treatment of advanced non-small-cell lung cancer (NSCLC). Emerging studies show that targeted therapies are also beneficial for patients with driver alterations such as epidermal growth factor receptor (EGFR) mutations in early-stage NSCLC (stages I–IIIA). Furthermore, patients with elevated programmed death-ligand 1 (PD-L1) expression appear to respond favorably to adjuvant immunotherapy. To determine the frequency of genomic alterations and PD-L1 status in early-stage NSCLC, we retrospectively analyzed data from 2066 unselected, single-center patients with NSCLC diagnosed using next-generation sequencing and immunohistochemistry. Nine-hundred and sixty-two patients (46.9%) presented with early-stage NSCLC. Of these, 37.0% had genomic alterations for which targeted therapies have already been approved for advanced NSCLC. The frequencies of driver mutations in the early stages were equivalent to those in advanced stages, i.e., the rates of EGFR mutations in adenocarcinomas were 12.7% (72/567) and 12.0% (78/650) in early and advanced NSCLC, respectively (p = 0778). In addition, 46.3% of early-stage NSCLC cases were PD-L1-positive, with a tumor proportion score (TPS) of ≥1%. With comparable frequencies of driver mutations in early and advanced NSCLC and PD-L1 overexpression in nearly half of patients with early-stage NSCLC, a broad spectrum of biomarkers for adjuvant and neoadjuvant therapies is available, and several are currently being investigated in clinical trials.  相似文献   
998.
Messenger RNA (mRNA) technology has already been successfully tested preclinically and there are ongoing clinical trials for protein replacement purposes; however, more effort has been put into the development of prevention strategies against infectious diseases. Apparently, mRNA vaccine approval against coronavirus disease 2019 (COVID-19) is a landmark for opening new opportunities for managing diverse health disorders based on this approach. Indeed, apart from infectious diseases, it has also been widely tested in numerous directions including cancer prevention and the treatment of inherited disorders. Interestingly, self-amplifying RNA (saRNA)-based technology is believed to display more developed RNA therapy compared with conventional mRNA technique in terms of its lower dosage requirements, relatively fewer side effects, and possessing long-lasting effects. Nevertheless, some challenges still exist that need to be overcome in order to achieve saRNA-based drug approval in clinics. Hence, the current review discusses the feasibility of saRNA utility for protein replacement therapy on various health disorders including rare hereditary diseases and also provides a detailed overview of saRNA advantages, its molecular structure, mechanism of action, and relevant delivery platforms.  相似文献   
999.
American trypanosomiasis is a worldwide health problem that requires attention due to ineffective treatment options. We evaluated n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives against trypomastigotes of the Trypanosoma cruzi strains NINOA and INC-5. An in silico analysis of the interactions of 1,4-di-N-oxide on the active site of trypanothione reductase (TR) and an enzyme inhibition study was carried out. The n-butyl series compound identified as T-150 had the best trypanocidal activity against T. cruzi trypomastigotes, with a 13% TR inhibition at 44 μM. The derivative T-147 behaved as a mixed inhibitor with Ki and Ki’ inhibition constants of 11.4 and 60.8 µM, respectively. This finding is comparable to the TR inhibitor mepacrine (Ki = 19 µM).  相似文献   
1000.
Cytochrome P450 enzymes (CYPs) are heme-containing enzymes that catalyze hydroxylation with a variety of biological molecules. Despite their diverse activity and substrates, the structures of CYPs are limited to a tertiary structure that is similar across all the enzymes. It has been presumed that CYPs overcome substrate selectivity with highly flexible loops and divergent sequences around the substrate entrance region. Here, we report the newly identified CYP101D5 from Sphingomonas echinoides. CYP101D5 catalyzes the hydroxylation of β-ionone and flavonoids, including naringenin and apigenin, and causes the dehydrogenation of α-ionone. A structural investigation and comparison with other CYP101 families indicated that spatial constraints at the substrate-recognition site originate from the B/C loop. Furthermore, charge distribution at the substrate binding site may be important for substrate selectivity and the preference for CYP101D5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号