首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
机械仪表   1篇
建筑科学   10篇
矿业工程   1篇
能源动力   2篇
水利工程   1篇
无线电   1篇
冶金工业   12篇
自动化技术   5篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   8篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有33条查询结果,搜索用时 4 毫秒
31.
Information regarding the spatial and temporal organization of river flow is required for many applications in river management, and is a fundamental requirement in ecohydraulics. As an alternative to detailed field surveys and to mesohabitat reconnaissance schemes, potential exists to deploy numerical flow simulation as an assessment and design tool. A key question is the extent to which complex hydrodynamic models are really practical in river management applications. This paper presents experiences using sediment simulation in intakes with multiblock, a three-dimensional modeling code, in conjunction with a statistical approach for classifying the spatiotemporal dynamics of flow behavior. Even in a simple configuration, the model is able to replicate well flow structures which associate with the mesohabitat concepts used in field reconnaissance techniques. The model also captures spatiotemporal dynamics in flow and depth behavior at these scales. However, because the model shows differential performance between flow stages and between differing channel (bed form) units, the smaller-scale and discharge-dependent dynamics of some zones within the channel may be less-well represented, and the implications of this for future research are noted.  相似文献   
32.
Large Woody Debris Structures for Sand-Bed Channels   总被引:2,自引:0,他引:2  
Described is a method for channel erosion control and habitat rehabilitation featuring intermittent placement of structures made of large woody debris. This method is expressly tailored to address severe problems typical of incised channels with little sediment coarser than sand. In these types of environments, buoyancy forces are typically more important factors in woody debris stability than fluid drag. Buoyant forces are counteracted by the weight of the structure, earth anchors, and sediment deposits. Design concepts were tested in a demonstration project constructed along 2 km of channel draining a 37-km2 watershed. Large woody debris structures reduced velocities in the region adjacent to the bank toe and induced sediment deposition and retention. Construction costs per unit channel length were 23–58% of costs for recent stone bank stabilization projects within the same region. During the second year following construction, 31% of the structures failed during high flows, probably due to inadequate anchoring.  相似文献   
33.
The emergence of the “sustainable development” concept as a response to the mining of natural resources for the benefit of multinational corporations has advanced the cause of long-term environmental management. A sustainable development model (SDM) framework that is inclusive of the “whole” natural environment is presented to illustrate the integration of the sustainable development of the “whole” ecosystem. The ecosystem approach is an inclusive framework that covers the natural environment relevant futures and constraints. These are dynamically interconnected and constitute the determinates of resources development component of the SDM. The second component of the SDM framework is the resources development patterns, i.e., the use of land, water, and atmospheric resources. All of these patterns include practices that utilize environmental resources to achieve a predefined outcome producing waste and by-products that require disposal into the environment. The water quality management practices represent the third component of the framework. These practices are governed by standards, limitations and available disposal means subject to quantity and quality permits. These interconnected standards, practices and permits shape the resulting environmental quality of the ecosystem under consideration. A fourth component, environmental indicators, of the SDM framework provides a measure of the ecosystem productivity and status that may differ based on societal values and culture. The four components of the SDM are interwoven into an outcome assessment process to form the management and feedback models. The concept of Sustainable Development is expressed in the management model as an objective function subject to desired constraints imposing the required bounds for achieving ecosystem sustainability. The development of the objective function and constrains requires monetary values for ecosystem functions, resources development activities and environmental cost. The feedback model ensures policy and resources use changes required for sustainability. An iterative process would be required to define the optimum ecosystem development plan that satisfies sustainable outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号