首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6769篇
  免费   897篇
  国内免费   335篇
电工技术   221篇
技术理论   1篇
综合类   318篇
化学工业   692篇
金属工艺   118篇
机械仪表   244篇
建筑科学   262篇
矿业工程   49篇
能源动力   679篇
轻工业   289篇
水利工程   154篇
石油天然气   101篇
武器工业   53篇
无线电   738篇
一般工业技术   438篇
冶金工业   112篇
原子能技术   295篇
自动化技术   3237篇
  2024年   12篇
  2023年   48篇
  2022年   127篇
  2021年   134篇
  2020年   111篇
  2019年   118篇
  2018年   154篇
  2017年   278篇
  2016年   311篇
  2015年   328篇
  2014年   437篇
  2013年   386篇
  2012年   455篇
  2011年   517篇
  2010年   437篇
  2009年   459篇
  2008年   466篇
  2007年   377篇
  2006年   430篇
  2005年   444篇
  2004年   406篇
  2003年   377篇
  2002年   262篇
  2001年   157篇
  2000年   126篇
  1999年   105篇
  1998年   78篇
  1997年   77篇
  1996年   54篇
  1995年   47篇
  1994年   52篇
  1993年   44篇
  1992年   32篇
  1991年   33篇
  1990年   15篇
  1989年   15篇
  1988年   14篇
  1987年   12篇
  1986年   4篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1979年   2篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1959年   2篇
排序方式: 共有8001条查询结果,搜索用时 15 毫秒
61.
Multi‐view reconstruction aims at computing the geometry of a scene observed by a set of cameras. Accurate 3D reconstruction of dynamic scenes is a key component for a large variety of applications, ranging from special effects to telepresence and medical imaging. In this paper we propose a method based on Moving Least Squares surfaces which robustly and efficiently reconstructs dynamic scenes captured by a calibrated set of hybrid color+depth cameras. Our reconstruction provides spatio‐temporal consistency and seamlessly fuses color and geometric information. We illustrate our approach on a variety of real sequences and demonstrate that it favorably compares to state‐of‐the‐art methods.  相似文献   
62.
Capturing exposure sequences to compute high dynamic range (HDR) images causes motion blur in cases of camera movement. This also applies to light‐field cameras: frames rendered from multiple blurred HDR light‐field perspectives are also blurred. While the recording times of exposure sequences cannot be reduced for a single‐sensor camera, we demonstrate how this can be achieved for a camera array. Thus, we decrease capturing time and reduce motion blur for HDR light‐field video recording. Applying a spatio‐temporal exposure pattern while capturing frames with a camera array reduces the overall recording time and enables the estimation of camera movement within one light‐field video frame. By estimating depth maps and local point spread functions (PSFs) from multiple perspectives with the same exposure, regional motion deblurring can be supported. Missing exposures at various perspectives are then interpolated.  相似文献   
63.
An important part of network analysis is understanding community structures like topological clusters and attribute‐based groups. Standard approaches for showing communities using colour, shape, rectangular bounding boxes, convex hulls or force‐directed layout algorithms remain valuable, however our Group‐in‐a‐Box meta‐layouts add a fresh strategy for presenting community membership, internal structure and inter‐cluster relationships. This paper extends the basic Group‐in‐a‐Box meta‐layout, which uses a Treemap substrate of rectangular regions whose size is proportional to community size. When there are numerous inter‐community relationships, the proposed extensions help users view them more clearly: (1) the Croissant–Doughnut meta‐layout applies empirically determined rules for box arrangement to improve space utilization while still showing inter‐community relationships, and (2) the Force‐Directed layout arranges community boxes based on their aggregate ties at the cost of additional space. Our free and open source reference implementation in NodeXL includes heuristics to choose what we have found to be the preferable Group‐in‐a‐Box meta‐layout to show networks with varying numbers or sizes of communities. Case study examples, a pilot comparative user preference study (nine participants), and a readability measure‐based evaluation of 309 Twitter networks demonstrate the utility of the proposed meta‐layouts.  相似文献   
64.
Modelling trees according to desired shapes is important for many applications. Despite numerous methods having been proposed in tree modelling, it is still a non‐trivial task and challenging. In this paper, we present a new variational computing approach for generating realistic trees in specific shapes. Instead of directly modelling trees from symbolic rules, we formulate the tree modelling as an optimization process, in which a variational cost function is iteratively minimized. This cost function measures the difference between the guidance shape and the target tree crown. In addition, to faithfully capture the branch structure of trees, several botanical factors, including the minimum total branches volume and spatial branches patterns, are considered in the optimization to guide the tree modelling process. We demonstrate that our approach is applicable to generate trees with different shapes, from interactive design and complex polygonal meshes.  相似文献   
65.
We present a novel framework for polyhedral mesh editing with face‐based projective maps that preserves planarity by definition. Such meshes are essential in the field of architectural design and rationalization. By using homogeneous coordinates to describe vertices, we can parametrize the entire shape space of planar‐preserving deformations with bilinear equations. The generality of this space allows for polyhedral geometric processing methods to be conducted with ease. We demonstrate its usefulness in planar‐quadrilateral mesh subdivision, a resulting multi‐resolution editing algorithm, and novel shape‐space exploration with prescribed transformations. Furthermore, we show that our shape space is a discretization of a continuous space of conjugate‐preserving projective transformation fields on surfaces. Our shape space directly addresses planar‐quad meshes, on which we put a focus, and we further show that our framework naturally extends to meshes with faces of more than four vertices as well.  相似文献   
66.
Molecular visualization is often challenged with rendering of large molecular structures in real time. We introduce a novel approach that enables us to show even large protein complexes. Our method is based on the level‐of‐detail concept, where we exploit three different abstractions combined in one visualization. Firstly, molecular surface abstraction exploits three different surfaces, solvent‐excluded surface (SES), Gaussian kernels and van der Waals spheres, combined as one surface by linear interpolation. Secondly, we introduce three shading abstraction levels and a method for creating seamless transitions between these representations. The SES representation with full shading and added contours stands in focus while on the other side a sphere representation of a cluster of atoms with constant shading and without contours provide the context. Thirdly, we propose a hierarchical abstraction based on a set of clusters formed on molecular atoms. All three abstraction models are driven by one importance function classifying the scene into the near‐, mid‐ and far‐field. Moreover, we introduce a methodology to render the entire molecule directly using the A‐buffer technique, which further improves the performance. The rendering performance is evaluated on series of molecules of varying atom counts.  相似文献   
67.
We address the problem of robust and efficient treatment of element collapse and inversion in corotational FEM simulations of deformable objects in two and three dimensions, and show that existing degeneration treatment methods have previously unreported flaws that seriously threaten robustness and physical plausibility in interactive applications. We propose a new method that avoids such flaws, yields faster and smoother degeneration recovery and extends the range of well‐behaved degenerate configurations without adding significant complexity or computational cost to standard explicit and quasi‐implicit solvers.  相似文献   
68.
Modern MRI measurements deliver volumetric and time‐varying blood‐flow data of unprecedented quality. Visual analysis of these data potentially leads to a better diagnosis and risk assessment of various cardiovascular diseases. Recent advances have improved the speed and quality of the imaging data considerably. Nevertheless, the data remains compromised by noise and a lack of spatiotemporal resolution. Besides imaging data, also numerical simulations are employed. These are based on mathematical models of specific features of physical reality. However, these models require realistic parameters and boundary conditions based on measurements. We propose to use data assimilation to bring measured data and physically‐based simulation together, and to harness the mutual benefits. The accuracy and noise robustness of the coupled approach is validated using an analytic flow field. Furthermore, we present a comparative visualization that conveys the differences between using conventional interpolation and our coupled approach.  相似文献   
69.
Recent years have seen increasing attention and significant progress in many‐light rendering, a class of methods for efficient computation of global illumination. The many‐light formulation offers a unified mathematical framework for the problem reducing the full lighting transport simulation to the calculation of the direct illumination from many virtual light sources. These methods are unrivaled in their scalability: they are able to produce plausible images in a fraction of a second but also converge to the full solution over time. In this state‐of‐the‐art report, we give an easy‐to‐follow, introductory tutorial of the many‐light theory; provide a comprehensive, unified survey of the topic with a comparison of the main algorithms; discuss limitations regarding materials and light transport phenomena and present a vision to motivate and guide future research. We will cover both the fundamental concepts as well as improvements, extensions and applications of many‐light rendering.  相似文献   
70.
Interactive rigid body simulation is an important part of many modern computer tools, which no authoring tool nor game engine can do without. Such high‐performance computer tools open up new possibilities for changing how designers, engineers, modelers and animators work with their design problems. This paper is a self contained state‐of‐the‐art report on the physics, the models, the numerical methods and the algorithms used in interactive rigid body simulation all of which have evolved and matured over the past 20 years. Furthermore, the paper communicates the mathematical and theoretical details in a pedagogical manner. This paper is not only a stake in the sand on what has been done, it also seeks to give the reader deeper insights to help guide their future research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号