首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3573篇
  免费   248篇
  国内免费   159篇
电工技术   128篇
综合类   234篇
化学工业   361篇
金属工艺   224篇
机械仪表   180篇
建筑科学   133篇
矿业工程   47篇
能源动力   91篇
轻工业   612篇
水利工程   76篇
石油天然气   83篇
武器工业   20篇
无线电   433篇
一般工业技术   197篇
冶金工业   80篇
原子能技术   81篇
自动化技术   1000篇
  2024年   11篇
  2023年   39篇
  2022年   123篇
  2021年   122篇
  2020年   92篇
  2019年   74篇
  2018年   59篇
  2017年   95篇
  2016年   93篇
  2015年   133篇
  2014年   162篇
  2013年   195篇
  2012年   268篇
  2011年   379篇
  2010年   305篇
  2009年   352篇
  2008年   284篇
  2007年   288篇
  2006年   233篇
  2005年   174篇
  2004年   121篇
  2003年   97篇
  2002年   51篇
  2001年   29篇
  2000年   35篇
  1999年   24篇
  1998年   24篇
  1997年   16篇
  1996年   11篇
  1995年   17篇
  1994年   13篇
  1993年   15篇
  1992年   13篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   10篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1964年   1篇
排序方式: 共有3980条查询结果,搜索用时 11 毫秒
31.
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.  相似文献   
32.
Estimation of photosynthetic light use efficiency (ε) from satellite observations is an important component of climate change research. The photochemical reflectance index, a narrow waveband index based on the reflectance at 531 and 570 nm, allows sampling of the photosynthetic activity of leaves; upscaling of these measurements to landscape and global scales, however, remains challenging. Only a few studies have used spaceborne observations of PRI so far, and research has largely focused on the MODIS sensor. Its daily global coverage and the capacity to detect a narrow reflectance band at 531 nm make it the best available choice for sensing ε from space. Previous results however, have identified a number of key issues with MODIS-based observations of PRI. First, the differences between the footprint of eddy covariance (EC) measurements and the MODIS footprint, which is determined by the sensor's observation geometry make a direct comparison between both data sources challenging and second, the PRI reflectance bands are affected by atmospheric scattering effects confounding the existing physiological signal. In this study we introduce a new approach for upscaling EC based ε measurements to MODIS. First, EC-measured ε values were “translated” into a tower-level optical PRI signal using AMSPEC, an automated multi-angular, tower-based spectroradiometer instrument. AMSPEC enabled us to adjust tower-measured PRI values to the individual viewing geometry of each MODIS overpass. Second, MODIS data were atmospherically corrected using a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which uses a time series approach and an image-based rather than pixel-based processing for simultaneous retrievals of atmospheric aerosol and surface bidirectional reflectance (BRDF). Using this approach, we found a strong relationship between tower-based and spaceborne reflectance measurements (r2 = 0.74, p < 0.01) throughout the vegetation period of 2006. Swath (non-gridded) observations yielded stronger correlations than gridded data (r2 = 0.58, p < 0.01) both of which included forward and backscatter observations. Spaceborne PRI values were strongly related to canopy shadow fractions and varied with different levels of ε. We conclude that MAIAC-corrected MODIS observations were able to track the site-level physiological changes from space throughout the observation period.  相似文献   
33.
Evolution of supra-glacial lakes across the Greenland Ice Sheet   总被引:1,自引:0,他引:1  
We used 268 cloud-free Moderate-resolution Imaging Spectroradiometer (MODIS) images from 2003 and 2005-2007 to study the seasonal evolution of supra-glacial lakes in three different regions of the Greenland Ice Sheet. Lake area estimates were obtained by developing an automated classification method for their identification based on 250 m resolution MODIS surface reflectance observations. Widespread supra-glacial lake formation and drainage is observed across the ice sheet, with a 2-3 week delay in the evolution of total supra-glacial lake area in the northern areas compared to the south-west. The onset of lake growth varies by up to one month inter-annually, and lakes form and drain at progressively higher altitudes during the melt season. A positive correlation was found between the annual peak in total lake area and modelled annual runoff. High runoff and lake extent years are generally characterised by low accumulation and high melt season temperatures, and vice versa. Our results indicate that, in a future warmer climate [Meehl, G. A., Stocker, T. F., Collins W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J. & Zhao, Z. C. (2007). Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.], Greenland supra-glacial lakes can be expected to form at higher altitudes and over a longer time period than is presently the case, expanding the area and time period over which connections between the ice sheet surface and base may be established [Das, S., Joughin, M., Behn, M., Howat, I., King, M., Lizarralde, D., & Bhatia, M. (2008). Fracture propagation to the base of the Greenland Ice Sheet during supra-glacial lake drainage. Science, 5877, 778-781] with potential consequences for ice sheet discharge [Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J. & Steffen, K. (2002). Surface melt-induced acceleration of Greenland Ice Sheet flow. Science, 297, 218-221.].  相似文献   
34.
Testing a MODIS Global Disturbance Index across North America   总被引:4,自引:0,他引:4  
Large-scale ecosystem disturbances (LSEDs) have major impacts on the global carbon cycle as large pulses of CO2 and other trace gases from terrestrial biomass loss are emitted to the atmosphere during disturbance events. The high temporal and spatial variability of the atmospheric emissions combined with the lack of a proven methodology to monitor LSEDs at the global scale make the timing, location and extent of vegetation disturbance a significant uncertainty in understanding the global carbon cycle. The MODIS Global Disturbance Index (MGDI) algorithm is designed for large-scale, regular, disturbance mapping using Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and Aqua/MODIS Enhanced Vegetation Index (EVI) data. The MGDI uses annual maximum composite LST data to detect fundamental changes in land-surface energy partitioning, while avoiding the high natural variability associated with tracking LST at daily, weekly, or seasonal time frames. Here we apply the full Aqua/MODIS dataset through 2006 to the improved MGDI algorithm across the woody ecosystems of North America and test the algorithm by comparison with confirmed, historical wildfire events and the windfall areas of documented major hurricanes. The MGDI accurately detects the location and extent of wildfire throughout North America and detects high and moderate severity impacts in the windfall area of major hurricanes. We also find detections associated with clear-cut logging and land-clearing on the forest-agricultural interface. The MGDI indicates that 1.5% (195,580 km2) of the woody ecosystems within North America was disturbed in 2005 and 0.5% (67,451 km2) was disturbed in 2006. The interannual variability is supported by wildfire detections and official burned area statistics.  相似文献   
35.
Since 1999, the National Commission for the Knowledge and Use of the Biodiversity (CONABIO) in Mexico has been developing and managing the “Operational program for the detection of hot-spots using remote sensing techniques”. This program uses images from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and from the Advanced Very High Resolution Radiometer of the National Oceanic and Atmospheric Administration (NOAA-AVHRR), which are operationally received through the Direct Readout station (DR) at CONABIO. This allows the near-real time monitoring of fire events in Mexico and Central America. In addition to the detection of active fires, the location of hot spots are classified with respect to vegetation types, accessibility, and risk to Nature Protection Areas (NPA). Besides the fast detection of fires, further analysis is necessary due to the considerable effects of forest fires on biodiversity and human life. This fire impact assessment is crucial to support the needs of resource managers and policy makers for adequate fire recovery and restoration actions. CONABIO attempts to meet these requirements, providing post-fire assessment products as part of the management system in particular for satellite-based burnt area mapping. This paper provides an overview of the main components of the operational system and will present an outlook to future activities and system improvements, especially the development of a burnt area product. A special focus will also be placed on the fire occurrence within NPAs of Mexico.  相似文献   
36.
The impact of mineral aerosol (dust) in the Earth's system depends on particle characteristics which are initially determined by the terrestrial sources from which the sediments are entrained. Remote sensing is an established method for the detection and mapping of dust events, and has recently been used to identify dust source locations with varying degrees of success. This paper compares and evaluates five principal methods, using MODIS Level 1B and MODIS Level 2 aerosol data, to: (a) differentiate dust (mineral aerosol) from non-dust, and (2) determine the extent to which they enable the source of the dust to be discerned. The five MODIS L1B methods used here are: (1) un-processed false colour composite (FCC), (2) brightness temperature difference, (3) Ackerman's (1997: J.Geophys. Res., 102, 17069-17080) procedure, (4) Miller's (2003:Geophys. Res. Lett. 30, 20, art.no.2071) dust enhancement algorithm and (5) Roskovensky and Liou's (2005: Geophys. Res. Lett. 32, L12809) dust differentiation algorithm; the aerosol product is MODIS Deep Blue (Hsu et al., 2004: IEEE Trans. Geosci. Rem. Sensing, 42, 557-569), which is optimised for use over bright surfaces (i.e. deserts). These are applied to four significant dust events from the Lake Eyre Basin, Australia. OMI AI was also examined for each event to provide an independent assessment of dust presence and plume location. All of the techniques were successful in detecting dust when compared to FCCs, but the most effective technique for source determination varied from event to event depending on factors such as cloud cover, dust plume mineralogy and surface reflectance. Significantly, to optimise dust detection using the MODIS L1B approaches, the recommended dust/non-dust thresholds had to be considerably adjusted on an event by event basis. MODIS L2 aerosol data retrievals were also found to vary in quality significantly between events; being affected in particular by cloud masking difficulties. In general, we find that OMI AI and MODIS AQUA L1B and L2 data are complementary; the former are ideal for initial dust detection, the latter can be used to both identify plumes and sources at high spatial resolution. Overall, approaches using brightness temperature difference (BT10-11) are the most consistently reliable technique for dust source identification in the Lake Eyre Basin. One reason for this is that this enclosed basin contains multiple dust sources with contrasting geochemical signatures. In this instance, BTD data are not affected significantly by perturbations in dust mineralogy. However, the other algorithms tested (including MODIS Deep Blue) were all influenced by ground surface reflectance or dust mineralogy; making it impossible to use one single MODIS L1B or L2 data type for all events (or even for a single multiple-plume event). There is, however, considerable potential to exploit this anomaly, and to use dust detection algorithms to obtain information about dust mineralogy.  相似文献   
37.
Investigating the temporal and spatial pattern of landscape disturbances is an important requirement for modeling ecosystem characteristics, including understanding changes in the terrestrial carbon cycle or mapping the quality and abundance of wildlife habitats. Data from the Landsat series of satellites have been successfully applied to map a range of biophysical vegetation parameters at a 30 m spatial resolution; the Landsat 16 day revisit cycle, however, which is often extended due to cloud cover, can be a major obstacle for monitoring short term disturbances and changes in vegetation characteristics through time.The development of data fusion techniques has helped to improve the temporal resolution of fine spatial resolution data by blending observations from sensors with differing spatial and temporal characteristics. This study introduces a new data fusion model for producing synthetic imagery and the detection of changes termed Spatial Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH). The algorithm is designed to detect changes in reflectance, denoting disturbance, using Tasseled Cap transformations of both Landsat TM/ETM and MODIS reflectance data. The algorithm has been tested over a 185 × 185 km study area in west-central Alberta, Canada. Results show that STAARCH was able to identify spatial and temporal changes in the landscape with a high level of detail. The spatial accuracy of the disturbed area was 93% when compared to the validation data set, while temporal changes in the landscape were correctly estimated for 87% to 89% of instances for the total disturbed area. The change sequence derived from STAARCH was also used to produce synthetic Landsat images for the study period for each available date of MODIS imagery. Comparison to existing Landsat observations showed that the change sequence derived from STAARCH helped to improve the prediction results when compared to previously published data fusion techniques.  相似文献   
38.
Epiphylls - lichens, fungi, liverworts, etc. infesting leaf surfaces - are found throughout humid forests of the world. It is well understood that epiphylls inhibit light interception by host plants, but their effect on remote sensing of colonized forests has not been examined. Incorporating leaf-level spectra from Terra Firme (primary forest) and Amazonian Caatinga (woodlands/forest growing on nutrient-deficient sandy soils), we used the GeoSAIL model to propagate leaf-level measurements to the canopy level and determine their effect on commonly used vegetation indices. In Caatinga, moderate infestations (50% leaf area epiphyll cover), lowered simulated Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) values by 6.1% and 20.4%, respectively, largely due to near infrared dampening. Heavy infestation (100% cover) simulations exhibited decreases 1.5-2 times greater than those of moderate infestations. For Terra Firme, which are generally less affected by epiphylls, moderate (20% leaf area) and heavy infestations (40%) lowered EVI by 4.4% (S.D. 0.8%) and 8.1% (S.D. 1.5%), respectively. Near infrared and green reflectance were most affected at the canopy level, showing mean decreases of 10.6% (S.D. 2.25%) and 9.5% (S.D. 3.49%), respectively, in heavy Terra Firme infestations. Time series of Moderate Resolution Imaging Spectrometer (MODIS) data corroborated the modeling results, suggesting a degree of coupling between epiphyll cover and the EVI and NDVI. These results suggest that, without explicit consideration of the presence of epiphylls, remote sensing-based methodologies may underestimate leaf area index, biomass and productivity in humid forests.  相似文献   
39.
研究了日本N4样机的电动助力转向系统的电机电流-输入扭矩特性.采用ATmega16L单片机为处理器,以直流有刷电机为执行器,应用PID补偿算法,设计了电动助力转向控制器.在试验台上进行了电机电流-输入扭矩特性试验,试验结果表明,该控制器的助力曲线接近日本N4样机,能取得比较满意的助力效果.  相似文献   
40.
A recurrent floating green algae bloom was detected in the Yellow Sea since 2007.The Ulva.prolifera is non\|toxic,but the massive accumulations can result in significant environmental damage and cause economic loss to marine industries.In this study,the spatial and temporal patterns of Ulva.prolifera green tides were investigated in the Yellow Sea during 2015 using HJ\|1A/1B and MODIS satellite images by means of NDVI (normalized difference vegetation index)and artificial interpretation.The results showed:(1)A little Ulva.prolifera was discovered firstly in adjacent sea of Yancheng,Jiangsu province in early May with distribution area 0.831 km2.Under the action of the southeast monsoon,Ulva.prolifera was gradually drifted to Shandong peninsula waters from south to north.The influential area and range reached a peak value with 1 752.756 km2 in late June,and gradually subsided from July to August.And Ulva.prolifera about 38.791 km2 was monitored in the South Bay of North Korea.In conclusion,Ulva.prolifera in the Yellow Sea in 2015 has experienced five major processes including “Occur\|Development\|Outbreak\|Recession\|Disappeared”.(2)Typhoon "CHAN\|HOM" certainly influenced the northward pathway of Ulva.prolifera and shifted towards the southwest,resulting in most of Ulva.prolifera moved to the east coast of Lianyungang,and speculated that minority Ulva.prolifera drifted to the South Bay of North Korea.(3)From the monitoring data,the spatial resolution between MODIS and ENVISAT (HJ\|1A / 1B)is difference significantly,250 m and 30 m respectively.A functional relation of the two data with monitoring area difference about 2.26 times was established to make up for the shortage of the environmental satellite (HJ\|1A/1B)images.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号