首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6605篇
  免费   700篇
  国内免费   104篇
电工技术   57篇
综合类   65篇
化学工业   3669篇
金属工艺   127篇
机械仪表   118篇
建筑科学   106篇
矿业工程   22篇
能源动力   77篇
轻工业   1614篇
水利工程   11篇
石油天然气   63篇
武器工业   5篇
无线电   290篇
一般工业技术   530篇
冶金工业   35篇
原子能技术   68篇
自动化技术   552篇
  2024年   5篇
  2023年   49篇
  2022年   661篇
  2021年   691篇
  2020年   129篇
  2019年   162篇
  2018年   207篇
  2017年   222篇
  2016年   310篇
  2015年   319篇
  2014年   316篇
  2013年   327篇
  2012年   293篇
  2011年   391篇
  2010年   252篇
  2009年   376篇
  2008年   421篇
  2007年   340篇
  2006年   242篇
  2005年   211篇
  2004年   197篇
  2003年   172篇
  2002年   135篇
  2001年   112篇
  2000年   131篇
  1999年   94篇
  1998年   84篇
  1997年   75篇
  1996年   53篇
  1995年   37篇
  1994年   58篇
  1993年   37篇
  1992年   24篇
  1991年   34篇
  1990年   23篇
  1989年   28篇
  1988年   18篇
  1987年   19篇
  1986年   30篇
  1985年   21篇
  1984年   10篇
  1983年   22篇
  1982年   10篇
  1981年   8篇
  1980年   11篇
  1979年   11篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   4篇
排序方式: 共有7409条查询结果,搜索用时 15 毫秒
51.
Fibrosis is a hallmark of adverse cardiac remodeling, which promotes heart failure, but it is also an essential repair mechanism to prevent cardiac rupture, signifying the importance of appropriate regulation of this process. In the remodeling heart, cardiac fibroblasts (CFs) differentiate into myofibroblasts (MyoFB), which are the key mediators of the fibrotic response. Additionally, cardiomyocytes are involved by providing pro-fibrotic cues. Nuclear receptor Nur77 is known to reduce cardiac hypertrophy and associated fibrosis; however, the exact function of Nur77 in the fibrotic response is yet unknown. Here, we show that Nur77-deficient mice exhibit severe myocardial wall thinning, rupture and reduced collagen fiber density after myocardial infarction and chronic isoproterenol (ISO) infusion. Upon Nur77 knockdown in cultured rat CFs, expression of MyoFB markers and extracellular matrix proteins is reduced after stimulation with ISO or transforming growth factor–β (TGF-β). Accordingly, Nur77-depleted CFs produce less collagen and exhibit diminished proliferation and wound closure capacity. Interestingly, Nur77 knockdown in neonatal rat cardiomyocytes results in increased paracrine induction of MyoFB differentiation, which was blocked by TGF-β receptor antagonism. Taken together, Nur77-mediated regulation involves CF-intrinsic promotion of CF-to-MyoFB transition and inhibition of cardiomyocyte-driven paracrine TGF-β-mediated MyoFB differentiation. As such, Nur77 provides distinct, cell-specific regulation of cardiac fibrosis.  相似文献   
52.
Background: Preexisting immunity to SARS-CoV-2 could be related to cross-reactive antibodies to common human-coronaviruses (HCoVs). This study aimed to evaluate whether human milk antibodies against to S1 and S2 subunits SARS-CoV-2 are cross-reactive to S1 and S2 subunits HCoV-OC43 and HCoV-229E in mothers with a confirmed COVID-19 PCR test, in mothers with previous viral symptoms during COVID-19 pandemic, and in unexposed mothers; Methods: The levels of secretory IgA (SIgA)/IgA, secretory IgM (SIgM)/IgM, and IgG specific to S1 and S2 SARS-CoV-2, and reactive to S1 + S2 HCoV-OC43, and HCoV-229E were measured in milk from 7 mothers with a confirmed COVID-19 PCR test, 20 mothers with viral symptoms, and unexposed mothers (6 Ctl1-2018 and 16 Ctl2-2018) using ELISA; Results: The S2 SARS-CoV-2 IgG levels were higher in the COVID-19 PCR (p = 0.014) and viral symptom (p = 0.040) groups than in the Ctl1-2018 group. We detected a higher number of positive correlations between the antigens and secretory antibodies in the COVID-19 PCR group than in the viral symptom and Ctl-2018 groups. S1 + S2 HCoV-OC43-reactive IgG was higher in the COVID-19 group than in the control group (p = 0.002) but did not differ for the other antibodies; Conclusions: Mothers with a confirmed COVID-19 PCR and mothers with previous viral symptoms had preexisting human milk antibodies against S2 subunit SARS-CoV-2. Human milk IgG were more specific to S2 subunit SARS-CoV-2 than other antibodies, whereas SIgA and SIgM were polyreactive and cross-reactive to S1 or S2 subunit SARS-CoV-2.  相似文献   
53.
Type 2 diabetes (T2D) typically occurs in the setting of obesity and insulin resistance, where hyperglycemia is associated with decreased pancreatic β-cell mass and function. Loss of β-cell mass has variably been attributed to β-cell dedifferentiation and/or death. In recent years, it has been proposed that circulating epigenetically modified DNA fragments arising from β cells might be able to report on the potential occurrence of β-cell death in diabetes. Here, we review published literature of DNA-based β-cell death biomarkers that have been evaluated in human cohorts of islet transplantation, type 1 diabetes, and obesity and type 2 diabetes. In addition, we provide new data on the applicability of one of these biomarkers (cell free unmethylated INS DNA) in adult cohorts across a spectrum from obesity to T2D, in which no significant differences were observed, and compare these findings to those previously published in youth cohorts where differences were observed. Our analysis of the literature and our own data suggest that β-cell death may occur in subsets of individuals with obesity and T2D, however a more sensitive method or refined study designs are needed to provide better alignment of sampling with disease progression events.  相似文献   
54.
In silico and in vitro methods were used to analyze ACE- and DPP-IV-inhibiting potential of Gouda cheese with a modified content of β-casein. Firstly, the BIOPEP-UWM database was used to predict the presence of ACE and DPP-IV inhibitors in casein sequences. Then, the following Gouda cheeses were produced: with decreased, increased, and normative content of β-casein after 1 and 60 days of ripening each (six variants in total). Finally, determination of the ACE/DPP-IV-inhibitory activity and the identification of peptides in respective Gouda-derived water-soluble extracts were carried out. The identification analyses were supported with in silico calculations, i.e., heatmaps and quantitative parameters. All Gouda variants exhibited comparable ACE inhibition, whereas DPP-IV inhibition was more diversified among the samples. The samples derived from Gouda with the increased content of β-casein (both stages of ripening) had the highest DPP-IV-inhibiting potency compared to the same samples measured for ACE inhibition. Regardless of the results concerning ACE and DPP-IV inhibition among the cheese samples, the heatmap showed that the latter bioactivity was predominant in all Gouda variants, presumably because it was based on the qualitative approach (i.e., peptide presence in the sample). Our heatmap did not include the bioactivity of a single peptide as well as its quantity in the sample. In turn, the quantitative parameters showed that the best sources of ACE/DPP-IV inhibitors were all Gouda-derived extracts obtained after 60 days of the ripening. Although our protocol was efficient in showing some regularities among Gouda cheese variants, in vivo studies are recommended for more extensive investigations of this subject.  相似文献   
55.
The relationship between protein motions (i.e., dynamics) and enzymatic function has begun to be explored in β-lactamases as a way to advance our understanding of these proteins. In a recent study, we analyzed the dynamic profiles of TEM-1 (a ubiquitous class A β-lactamase) and several ancestrally reconstructed homologues. A chief finding of this work was that rigid residues that were allosterically coupled to the active site appeared to have profound effects on enzyme function, even when separated from the active site by many angstroms. In the present work, our aim was to further explore the implications of protein dynamics on β-lactamase function by altering the dynamic profile of TEM-1 using computational protein design methods. The Rosetta software suite was used to mutate amino acids surrounding either rigid residues that are highly coupled to the active site or to flexible residues with no apparent communication with the active site. Experimental characterization of ten designed proteins indicated that alteration of residues surrounding rigid, highly coupled residues, substantially affected both enzymatic activity and stability; in contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Our results provide additional insight into the structure-function relationship present in the TEM family of β-lactamases. Furthermore, the integration of computational protein design methods with analyses of protein dynamics represents a general approach that could be used to extend our understanding of the relationship between dynamics and function in other enzyme classes.  相似文献   
56.
Tumor necrosis factor-alpha (TNF-α) is a multifunctional Th1 cytokine and one of the most important inflammatory cytokines. In pregnancy, TNF-α influences hormone synthesis, placental architecture, and embryonic development. It was also shown that increased levels of TNF-α are associated with pregnancy loss and preeclampsia. Increased TNF-α levels in complicated pregnancy draw attention to trophoblast biology, especially migratory activity, syncytialisation, and endocrine function. Additionally, elevated TNF-α levels may affect the maternal-fetal relationship by altering the secretory profile of placental immunomodulatory factors, which in turn affects maternal immune cells. There is growing evidence that metabolic/pro-inflammatory cytokines can program early placental functions and growth in the first trimester of pregnancy. Furthermore, early pregnancy placenta has a direct impact on fetal development and maternal immune system diseases that release inflammatory (e.g., TNF-α) and immunomodulatory factors, such as chronic inflammatory rheumatic, gastroenterological, or dermatological diseases, and may result in an abnormal release of cytokines and chemokines in syncytiotrophoblasts. Pregnancy poses a challenge in the treatment of chronic disease in patients who plan to have children. The activity of the disease, the impact of pregnancy on the course of the disease, and the safety of pharmacotherapy, including anti-rheumatic agents, in pregnancy should be considered.  相似文献   
57.
Platelets play a crucial role in the physiology of primary hemostasis and pathological processes such as arterial thrombosis; thus, developing a therapeutic target that prevents platelet activation can reduce arterial thrombosis. Pterostilbene (PTE) has remarkable pharmacological activities, including anticancer and neuroprotection. Few studies have reported the effects of pterostilbene on platelet activation. Thus, we examined the inhibitory mechanisms of pterostilbene in human platelets and its role in vascular thrombosis prevention in mice. At low concentrations (2–8 μM), pterostilbene strongly inhibited collagen-induced platelet aggregation. Furthermore, pterostilbene markedly diminished Lyn, Fyn, and Syk phosphorylation and hydroxyl radical formation stimulated by collagen. Moreover, PTE directly hindered integrin αIIbβ3 activation through interfering with PAC-1 binding stimulated by collagen. In addition, pterostilbene affected integrin αIIbβ3-mediated outside-in signaling, such as integrin β3, Src, and FAK phosphorylation, and reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Furthermore, pterostilbene substantially prolonged the occlusion time of thrombotic platelet plug formation in mice. This study demonstrated that pterostilbene exhibits a strong activity against platelet activation through the inhibition of integrin αIIbβ3-mediated inside-out and outside-in signaling, suggesting that pterostilbene can serve as a therapeutic agent for thromboembolic disorders.  相似文献   
58.
Disulfiram (DSF), an irreversible aldehyde dehydrogenase inhibitor, is being used in anticancer therapy, as its effects in humans are known and less adverse than conventional chemotherapy. We explored the potential mechanism behind the cytotoxicity of DSF-Cu+/Cu2+ complexes in oral epidermoid carcinoma meng-1 (OECM-1) and human gingival epithelial Smulow-Glickman (SG) cells. Exposure to CuCl2 or CuCl slightly but concentration-dependently decreased cell viability, while DSF-Cu+/Cu2+ induced cell death in OECM-1 cells, but not SG cells. DSF-Cu+/Cu2+ also increased the subG1 population and decreased the G1, S, and G2/M populations in OECM-1 cells, but not SG cells, and suppressed cell proliferation in both OECM-1 and SG cells. ALDH enzyme activity was inhibited by CuCl and DSF-Cu+/Cu2+ in SG cells, but not OECM-1 cells. ROS levels and cellular senescence were increased in DSF-Cu+/Cu2+-treated OECM-1 cells, whereas they were suppressed in SG cells. DSF-Cu+/Cu2+ induced mitochondrial fission in OECM-1 cells and reduced mitochondrial membrane potential. CuCl2 increased but DSF- Cu2+ impaired oxygen consumption rates and extracellular acidification rates in OECM-1 cells. CuCl2 stabilized HIF-1α expression under normoxia in OECM-1 cells, and complex with DSF enhanced that effect. Levels of c-Myc protein and its phosphorylation at Tyr58 and Ser62 were increased, while levels of the N-terminal truncated form (Myc-nick) were decreased in DSF-Cu+/Cu2-treated OECM-1 cells. These effects were all suppressed by pretreatment with the ROS scavenger NAC. Overexpression of c-Myc failed to induce HIF-1α expression. These findings provide novel insight into the potential application of DSF-CuCl2 complex as a repurposed agent for OSCC cancer therapy.  相似文献   
59.
Estrogen-related receptor α (ERRα), which is overexpressed in a variety of cancers has been considered as an effective target for anticancer therapy. ERRα inverse agonists have been proven to effectively inhibit the migration and invasion of cancer cells. As few crystalline complexes have been reported, molecular dynamics (MD) simulations were carried out in this study to deepen the understanding of the interaction mechanism between inverse agonists and ERRα. The binding free energy was analyzed by the MM-GBSA method. The results show that the total binding free energy was positively correlated with the biological activity of an inverse agonist. The interaction of the inverse agonist with the hydrophobic interlayer composed of Phe328 and Phe495 had an important impact on the biological activity of inverse agonists, which was confirmed by the decomposition of energy on residues. As Glu331 flipped and formed a hydrogen bond with Arg372 in the MD simulation process, the formation of hydrogen bond interaction with Glu331 was not a necessary condition for the compound to act as an inverse agonist. These rules provide guidance for the design of new inverse agonists.  相似文献   
60.
Chronic Kidney Disease (CKD) is associated with sustained inflammation and progressive fibrosis, changes that have been linked to altered connexin hemichannel-mediated release of adenosine triphosphate (ATP). Kidney fibrosis develops in response to increased deposition of extracellular matrix (ECM), and up-regulation of collagen I is an early marker of renal disease. With ECM remodeling known to promote a loss of epithelial stability, in the current study we used a clonal human kidney (HK2) model of proximal tubular epithelial cells to determine if collagen I modulates changes in cell function, via connexin-43 (Cx43) hemichannel ATP release. HK2 cells were cultured on collagen I and treated with the beta 1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± the Cx43 mimetic Peptide 5 and/or an anti-integrin α2β1 neutralizing antibody. Phase microscopy and immunocytochemistry observed changes in cell morphology and cytoskeletal reorganization, whilst immunoblotting and ELISA identified changes in protein expression and secretion. Carboxyfluorescein dye uptake and biosensing measured hemichannel activity and ATP release. A Cytoselect extracellular matrix adhesion assay assessed changes in cell-substrate interactions. Collagen I and TGFβ1 synergistically evoked increased hemichannel activity and ATP release. This was paralleled by changes to markers of tubular injury, partly mediated by integrin α2β1/integrin-like kinase signaling. The co-incubation of the hemichannel blocker Peptide 5, reduced collagen I/TGFβ1 induced alterations and inhibited a positive feedforward loop between Cx43/ATP release/collagen I. This study highlights a role for collagen I in regulating connexin-mediated hemichannel activity through integrin α2β1 signaling, ahead of establishing Peptide 5 as a potential intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号