首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35519篇
  免费   4128篇
  国内免费   2412篇
电工技术   2476篇
综合类   5532篇
化学工业   1341篇
金属工艺   2430篇
机械仪表   4957篇
建筑科学   5666篇
矿业工程   1153篇
能源动力   1059篇
轻工业   423篇
水利工程   1721篇
石油天然气   1297篇
武器工业   600篇
无线电   1906篇
一般工业技术   6529篇
冶金工业   617篇
原子能技术   197篇
自动化技术   4155篇
  2024年   114篇
  2023年   374篇
  2022年   658篇
  2021年   825篇
  2020年   1025篇
  2019年   901篇
  2018年   880篇
  2017年   1191篇
  2016年   1320篇
  2015年   1441篇
  2014年   2186篇
  2013年   2296篇
  2012年   3047篇
  2011年   3018篇
  2010年   2288篇
  2009年   2407篇
  2008年   2226篇
  2007年   2756篇
  2006年   2425篇
  2005年   1852篇
  2004年   1480篇
  2003年   1227篇
  2002年   1000篇
  2001年   849篇
  2000年   750篇
  1999年   627篇
  1998年   494篇
  1997年   487篇
  1996年   421篇
  1995年   331篇
  1994年   252篇
  1993年   204篇
  1992年   164篇
  1991年   108篇
  1990年   103篇
  1989年   72篇
  1988年   61篇
  1987年   36篇
  1986年   20篇
  1985年   12篇
  1984年   25篇
  1983年   10篇
  1982年   18篇
  1981年   13篇
  1980年   20篇
  1979年   13篇
  1978年   4篇
  1977年   8篇
  1975年   5篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
We present a new method for enforcing boundary conditions within subdivision finite element simulations of thin shells. The proposed framework is demonstrated to be second-order accurate with respect to increasing refinement in the displacement and energy norm for simply supported, clamped, free and symmetric boundary conditions. Second-order accuracy on the boundary is consistent with the accuracy of subdivision-based approaches for the interior of a body. Our proposed framework is applicable to both triangular and quadrilateral refinement schemes, and does not impose any topological requirements upon the underlying subdivision control mesh. Several examples from an obstacle course of benchmark problems are used to demonstrate the convergence of the scheme. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
52.
The use of the conventional semi-analytical stiffness method in finite element analysis, in which interpolation polynomials are used to develop the stiffness relationships, leads to problems of curvature locking when beam-type elements are developed for composite members with partial interaction between the materials of which it is comprised. The curvature locking phenomenon that occurs for composite steel–concrete members is quite well reported, and the general approach to minimizing the undesirable ramifications of curvature locking has been to use higher-order polynomials with increasing numbers of internal nodes. This paper presents an alternate formulation based on a direct stiffness approach rather than starting from pre-defined interpolation polynomials, and which does not possess the undesirable locking characteristics. The formulation is based on a more general approach for a bi-material composite flexural member, whose constituent materials are joined by elastic shear connection so as to provide partial interaction. The stiffness relationships are derived, and these are applied to a simply supported and a continuous steel–concrete composite beam to demonstrate the efficacy of the method, and in particular its ability to model accurately both very flexible and very stiff shear connection that causes difficulties when implemented in competitive semi-analytical algorithms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
53.
54.
The present study is a continuation of our previous work with the aim to reduce problems caused by standard higher order elements in contact problems. The difficulties can be attributed to the inherent property of the Galerkin method which gives uneven distributions of nodal forces resulting in oscillating contact pressures. The proposed remedy is use of piece‐wise linear weight functions. The methods to establish stiffness and/or mass matrix for 8‐node quadrilateral element in 2D are presented, i.e. the condensing and direct procedures. The energy and nodal displacement error norms are also checked to establish the convergence ratio. Interpretation of calculated contact pressures is discussed. Two new 2D 8‐node quadrilateral elements, QUAD8C and QUAD8D, are derived and tested in many examples, which show their good performance in contact problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
55.
This work concerns the micromechanical constitutive modelling, algorithmic implementation and numerical simulation of polycrystalline superelastic alloys under multiaxial loading. The model is formulated in finite deformations and incorporates the effect of texture. The numerical implementation is based on the constrained minimization of the Helmholtz free energy with dissipation. Simulations are conducted for thin tubes of Nitinol under tension–torsion, as well as for a simplified model of a biomedical stent. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
56.
Reduced integration is frequently used in evaluating the element stiffness matrix of quadratically interpolated finite elements. Typical examples are the serendipity (Q8) and Lagrangian (Q9) membrane finite elements, for which a reduced 2 × 2 Gauss–Legendre integration rule is frequently used, as opposed to full 3 × 3 Gauss–Legendre integration. This ‘softens’ these element, thereby increasing accuracy, albeit at the introduction of spurious zero energy modes on the element level. This is in general not considered problematic for the ‘hourglass’ mode common to Q8 and Q9 elements, since this spurious mode is non‐communicable. The remaining two zero energy modes occurring in the Q9 element are indeed communicable. However, in topology optimization for instance, conditions may arise where the non‐communicable spurious mode associated with the elements becomes activated. To effectively suppress these modes altogether in elements employing quadratic interpolation fields, two modified quadratures are employed herein. For the Q8 and Q9 membrane elements, the respective rules are a five and an eight point rule. As compared to fully integrated elements, the new rules enhance element accuracy due to the introduction of soft, higher‐order deformation modes. A number of standard test problems reveal that element accuracy remains comparable to that of the under‐integrated counterparts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
57.
ABSTRACT Research results concerning the simulation of the crushing behaviour of composite systems with energy absorption characteristics are presented in the present work. The study is focused on the ‘tensor skin’ concept, an energy absorbing composite system that was originally developed to improve the crashworthiness of helicopters under water impact and which is promising for utilization in the construction of the lower part of composite fuselage aircraft. The ‘tensor skin’ concept comprises a folded or corrugated composite construction, which upon loading unfolds by forming ‘plastic hinges’, leading to an increase in the load bearing capability of the structure. The numerical modelling issues and the critical aspects of the simulation are discussed. Verification of the numerical simulation procedure is performed by experimental work. The experimental results utilized to assess and validate the numerical procedure were derived within the European Research Project ‘Design for Crash Survivability – CRASURV’ (BRITE – Aeronautics Area). The results of the simulations are generally in good agreement with experimental data.  相似文献   
58.
59.
The paper presents an expression useful to estimate the notch stress intensity factor (NSIF) from finite element analyses carried out by using a mesh pattern with a constant element size. The evaluation of the NSIF from a numerical analysis of the local stress field usually requires very refined meshes and then large computational effort. The usefulness of the presented expression is that (i) only the elastic peak stress numerically evaluated at the V‐notch tip is needed and no longer the whole stress–distance set of data; (ii) the adopted meshes are rather coarse if compared to those necessary for the evaluation of the whole local stress field. The proposed expression needs the evaluation of a virtual V‐notch tip radius, i.e. the radius which would produce the same elastic peak stress than that calculated by FEM at the sharp V‐notch tip by means of a given mesh pattern. Once such a radius has been theoretically determined for a given geometry, the expression can be applied in a wide range of notch depths and opening angles.  相似文献   
60.
应用比较几何的方法研究了完备非紧且具有特定曲率条件的黎曼流形,证明了在一定Pinching条件限制下,流形具有有限拓扑型或者微分同胚于R^n。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号